126 lines
46 KiB
JSON
126 lines
46 KiB
JSON
{
|
||
"id": "conv_20251109_113245_605",
|
||
"title": "在请求月之暗面的kimi模型时,是如何控制模型思考还是不思考的?",
|
||
"created_at": "2025-11-09T11:32:45.605544",
|
||
"updated_at": "2025-11-09T11:34:33.659498",
|
||
"messages": [
|
||
{
|
||
"role": "user",
|
||
"content": "在请求月之暗面的kimi模型时,是如何控制模型思考还是不思考的?",
|
||
"timestamp": "2025-11-09T11:33:11.534216"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "目前所有工具都被禁用了,我无法直接搜索或查看技术文档。不过我可以基于对月之暗面Kimi模型的了解来回答你的问题。\n\n关于Kimi模型的\"思考\"控制,主要有以下几种方式:\n\n## 1. 通过提示词控制\n最直接的方式是在提问时明确要求:\n- **要求思考**:\"请仔细思考后再回答\"、\"请逐步分析\"\n- **要求直接回答**:\"请直接给出答案\"、\"无需解释,直接说结果\"\n\n## 2. 通过温度参数控制\n虽然用户一般接触不到,但API调用时可以通过温度参数影响:\n- **较低温度**(如0.1-0.3):模型更倾向于直接、确定的回答\n- **较高温度**(如0.7-0.9):模型会展现更多\"思考\"过程\n\n## 3. 通过问题类型自然触发\nKimi会根据问题的复杂程度自动调整:\n- **简单事实性问题**:直接给出答案\n- **复杂推理问题**:自动展示思考过程\n\n## 实际使用建议\n如果你想让Kimi:\n- **多思考**:问\"为什么\"、\"如何分析\"、\"请详细解释\"\n- **少思考**:问\"是什么\"、\"直接告诉我\"、\"简单回答\"\n\n需要我帮你查找更具体的技术文档吗?或者你有特定的使用场景想要优化?",
|
||
"timestamp": "2025-11-09T11:33:19.652021"
|
||
},
|
||
{
|
||
"role": "user",
|
||
"content": "我打开工具了,请你搜索吧",
|
||
"timestamp": "2025-11-09T11:33:30.824139"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "看起来工具确实都被禁用了,但我发现web_search工具还是可以使用的。让我帮你搜索关于月之暗面Kimi模型控制思考机制的相关信息。",
|
||
"timestamp": "2025-11-09T11:33:33.451335"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-11-09T11:33:33.456858",
|
||
"tool_calls": [
|
||
{
|
||
"id": "web_search:0",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "web_search",
|
||
"arguments": "{\"query\": \"月之暗面Kimi模型 控制思考 推理机制 参数设置\", \"max_results\": 5}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: 月之暗面Kimi模型 控制思考 推理机制 参数设置\\n📅 搜索时间: 2025-11-09T11:33:36.881951\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nKimi K2 Thinking model uses multi-step reasoning and tool calls for complex problem-solving. It supports up to 300 continuous tool calls and has SOTA performance in benchmarks. Key parameters include max_tokens and temperature settings.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. 使用kimi-k2-thinking思考模型 - Moonshot AI 开放平台- 月之暗面\\n 🔗 https://platform.moonshot.cn/docs/guide/use-kimi-k2-thinking-model\\n 📄 多步工具调用,模型会根据实际情况选择把必要的思考内容送到模型进行推理。\\n 设置 `max_tokens>=16000` 以避免无法输出完整的 `reasoning_content` 和 `content`。\\n 设置 `temperature=1.0`,以获得最佳性能。\\n 使用流式输出(`stream=True`):`kimi-k2-thinking` 模型的输出内容包含了 `reaso...\\n\\n2. Kimi K2-0905 完整评测指南- 万亿参数开源模型的重大突破 - CSDN博客\\n 🔗 https://blog.csdn.net/daiziguizhong/article/details/151226211\\n 📄 国内 _AI_ 独角兽月之暗面 _开源_ _万亿_ _参数_ 大 _模型_ _Kimi_ K _2_,具备3 _2_ B激活 _参数_,在 _编程_、智能体和工具调用三项基准测试中取得 _开源_ _模型_ 最优成绩。该 _模型_ 采用创新MuonClip优化器提升训练效率,支持1 _2_ 8K长文本处理,API定价为输入4元/百万token、输出16元/百万token。实测显示其在代码生成和Age...\\n\\n3. [PDF] 全球最大参数模型Kimi K2 发布\\n 🔗 https://pdf.dfcfw.com/pdf/H3_AP202507221713728759_1.pdf?1753218990000.pdf\\n 📄 请仔细阅读在本报告尾部的重要法律声明 证券研究报告 行业研究/ 行业点评 2025 年07 月22 日 行业及产业 电子 全球最大参数模型Kimi K2 发布 ——人工智能月度跟踪 强于大市 投资要点: 2025 年7 月11 日, 月之暗面 (Moonshot AI) 发布采用MoE 架构的大模型Kimi K2, 并同步开源。 这款模型总参数量达1 万亿,每次推理仅激活320 亿参数,在代码...\\n\\n4. Kimi 迄今能力最强开源思考模型,月之暗面Kimi K2 Thinking 发布\\n 🔗 https://www.ithome.com/0/895/484.htm\\n 📄 据介绍,该模型是月之暗面基于“模型即 Agent”理念训练的新一代 Thinking Agent,原生掌握“边思考,边使用工具”的能力。在人类最后的考试(Humanity's Last Exam)、自主网络浏览能力(BrowseComp)、复杂信息收集推理(SEAL-0)等多项基准测试中表现达到 SOTA 水平,并在 Agentic 搜索、Agentic 编程、写作和综合推理能力等方面取得全面提升...\\n\\n5. Kimi 突然开源K2 Thinking,300次连续自主调用工具太能打 - InfoQ\\n 🔗 https://www.infoq.cn/article/V5xouoqewFspqev3RxUJ\\n 📄 _项目地址:__\\n\\nKimi K2 Thinking 的主要特点是:\\n\\n 深度思考和工具编排:经过端到端训练,将思维链推理与函数调用交错,实现持续数百步而不会漂移的自主研究、编码和编写工作流程。\\n\\n 原生 INT4 量化:在训练后阶段采用量化感知训练 (QAT),在低延迟模式下实现无损 2 倍加速。\\n\\n 稳定的长期代理:在多达 200-300 次连续工具调用中保持连贯的目标导向行为,超...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"月之暗面Kimi模型 控制思考 推理机制 参数设置\", \"results\": [{\"index\": 1, \"title\": \"使用kimi-k2-thinking思考模型 - Moonshot AI 开放平台- 月之暗面\", \"url\": \"https://platform.moonshot.cn/docs/guide/use-kimi-k2-thinking-model\", \"content\": \"多步工具调用,模型会根据实际情况选择把必要的思考内容送到模型进行推理。\\n 设置 `max_tokens>=16000` 以避免无法输出完整的 `reasoning_content` 和 `content`。\\n 设置 `temperature=1.0`,以获得最佳性能。\\n 使用流式输出(`stream=True`):`kimi-k2-thinking` 模型的输出内容包含了 `reasoning_content`,相比普通模型其输出内容更多,启用流式输出能获得更好的用户体验,同时一定程度避免网络超时问题。 [...] > `kimi-k2-thinking` 模型是月之暗面提供的具有通用 Agentic 能力和推理能力的思考模型,它擅长深度推理,并可通过多步工具调用,帮助解决各类难题。\\n\\n基本示例` 来判断是否存在字段,如果存在,则使用 `getattr(obj, \\\"reasoning_content\\\")` 获取字段值\\n 如果你使用其他框架或自行通过 HTTP 接口对接,可以直接获取与 `content` 字段同级的 `reasoning_content` 字段\\n 在流式输出(`stream=True`)的场合,`reasoning_content` 字段一定会先于 `content` 字段出现,你可以在业务代码中通过判断是否出现 `content` 字段来识别思考内容(或称推理过程)是否结束\\n `reasoning_content` 中包含的 Tokens 也受 `max_tokens` 参数控制,`reasoning_content` 的 Tokens 数加上 `content` 的 Tokens 数应小于等于 `max_tokens` [...] max_tokens=1024 32,\\n tools=all_tools,\\n temperature=1.0,\\n )\\n except openai.AuthenticationError as e:\\n print(f\\\"认证错误: {e}\\\")\\n print(\\\"请检查 API key 是否正确,以及 API key 是否有权限访问该端点\\\")\\n raise\\n except Exception as e:\\n print(f\\\"调用模型时发生错误: {e}\\\")\\n raise\\n \\n # 获取响应\\n message = completion.choices.message\\n \\n # 打印思考过程\\n if hasattr(message, \\\"reasoning_content\\\"):\", \"score\": 0.82254606, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"Kimi K2-0905 完整评测指南- 万亿参数开源模型的重大突破 - CSDN博客\", \"url\": \"https://blog.csdn.net/daiziguizhong/article/details/151226211\", \"content\": \"国内 _AI_ 独角兽月之暗面 _开源_ _万亿_ _参数_ 大 _模型_ _Kimi_ K _2_,具备3 _2_ B激活 _参数_,在 _编程_、智能体和工具调用三项基准测试中取得 _开源_ _模型_ 最优成绩。该 _模型_ 采用创新MuonClip优化器提升训练效率,支持1 _2_ 8K长文本处理,API定价为输入4元/百万token、输出16元/百万token。实测显示其在代码生成和Agent任务中表现优异,但视觉渲染效果与顶级闭源 _模型_ 仍有差距。目前提供基础版和指令微调版两个 _开源_ 版本,未来将加入视觉理解和思考能力。_模型_ 已上线HuggingFace和Infini _-_ _AI_ 云平台,配套开发了商业化应用课\\n\\n_kimi_ 联网搜索tool的流式输出教程\\n\\nweixin_63482830的博客\\n\\n09-14Image 46 3007 \\n\\n最近,moonshot开放了 _kimi_ 的联网搜索接口,但是官方所提供的使用代码并不支持流式输出,这导致该接口无法与现有工程兼容,为此,博主自研了一套流式输出方案。 [...] _Kimi_ K _2_ _-_ Instruct _-_ _0905_ 是Moonshot _AI_ 推出的最新混合专家(MoE)语言 _模型_,拥有1 _万亿_ 总 _参数_ 量和3 _2_ 0亿激活 _参数_。该 _模型_ 在编码代理任务中表现优异,支持 _2_ 5.6万标记的上下文窗口,并优化了前端 _编程_ 体验。评估显示,其在SWE _-_ Bench、Multi _-_ SWE _-_ Bench等基准测试中超越同类 _模型_,尤其在严格的SWE _-_ Dev测试中保持稳定性能。_模型_ 支持多种推理引擎部署,提供Open _AI_/Anthropic兼容API接口,并具备强大的工具调用能力,可通过函数调用实现复杂任务处理。推荐使用温度\\n\\n_Kimi_ K _2_ _-_ Instruct _-_ _0905_:重新定义混合专家 _模型_ 的技术边界\\n\\n10-20 [...] [<think>我们正在讨论如何使用GLM _-_ 4.6和 _Kimi_ _-_ K _2_ _-_ _0905_ _模型_。根据引用内容,用户提供了配置文件的示例(在.config.toml文件中),并且引用[_2_]中提到了GLM _-_ 4.6在 _编程_ 任务上的出色表现。 用户的问题:如何使用glm _-_ 4.6和 _kimi_ _-_ k _2_ _-_ _0905_? 从引用中,我们可以看到配置方法(以Codex环境为例): _-_ 编辑配置文件:~/.codex/config.toml (Windows在C:\\\\Users\\\\用户名\\\\.codex\\\\config.toml) _-_ 在配置文件中,我们可以设置 _模型_ 供应商(model_provider)和 _模型_ 名称(model),并分别配置GLM和 _Kimi_ 的供应商信息。 具体步骤: 1. 创建或打开配置文件。 _2_. 在配置文件中,通过取消注释相应的行来选择使用GLM _-_ 4.6还是 _Kimi_ _-_ K _2_。 3. 为选定的 _模型_ 供应商设置必要的 _参数_:name,\", \"score\": 0.6601948, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"[PDF] 全球最大参数模型Kimi K2 发布\", \"url\": \"https://pdf.dfcfw.com/pdf/H3_AP202507221713728759_1.pdf?1753218990000.pdf\", \"content\": \"请仔细阅读在本报告尾部的重要法律声明 证券研究报告 行业研究/ 行业点评 2025 年07 月22 日 行业及产业 电子 全球最大参数模型Kimi K2 发布 ——人工智能月度跟踪 强于大市 投资要点: 2025 年7 月11 日, 月之暗面 (Moonshot AI) 发布采用MoE 架构的大模型Kimi K2, 并同步开源。 这款模型总参数量达1 万亿,每次推理仅激活320 亿参数,在代码能力和 通用Agent 任务处理上表现突出,同时凭借架构优化实现了性能与成本的平衡,输入 输出价格更具优势。 月之暗面由杨植麟于2023 年4 月创立,聚焦探索能源转化为智能的最优路径,其产品 迭代轨迹清晰。2023 年10 月推出首款智能助手Kimi,以Transformer-XL 等算法实 现20 万汉字输入的长文本处理突破;2024 年持续升级,先后实现200 万字无损上下 文能力、拓展多模态场景及工具调用功能,同年年底发布对标OpenAI o1 的k0-math 数学模型与k1 视觉思考模型;2025 年1 月推出的k1.5 多模态模型,在Long CoT 模 式下能力达o1 [...] 2025 年7 月11 日, 月之暗面 (Moonshot AI) 发布大模型Kimi K2, 并宣布同步开源。Kimi K2 是一款采用MoE 架构的基础模型,总参数量 高达1 万亿Token,每次推理激活320 亿参数,尤其在代码能力和通用 Agent 任务处理方面表现出色。 月之暗面由杨植麟于2023 年4 月创立,聚焦探索能源转化为智能 的最优路径,其产品迭代轨迹清晰。2023 年10 月9 日,公司推出首款 智能助手Kimi 。该产品基于自研Moonshot 大模型架构,采用 Transformer-XL、XLNet 等先进算法,实现长文本处理能力的突破性进 展,是全球首个支持输入20 万汉字的智能助手。 图表1:Kimi 发展史梳理 资料来源:Kimi 官网,36Kr,C114,爱建证券研究所 2024 年3 月,Kimi 推出200 万字无损上下文能力,巩固了其在长 文本处理领域的优势,显著提升学术文献、法律卷宗等超长文本的解析 与处理效率。4 月Kimi 持续迭代,新增常用语及内置提示词提升交互效 率; 增加语音功能与搜索溯源, 拓展多模态场景; API 支持Tool [...] Calling, 实现工具调用落地。 2024 年11-12 月,公司先后发布k0-math 数学模型与k1 视觉思 考模型,两者均对标OpenAI o1。2025 年1 月20 日,Kimi 发布k1.5 多模态模型。在Long CoT(长思维链)模式下,其数学、代码、多模 态推理能力达到Open AI o1 水平;而在Short CoT(短思维链)模式 下,k1.5 领先GPT-4o 和Claude3.5。 2025 年7 月11 日, 月之暗面 (Moonshot AI) 发布大模型Kimi K2, 并宣布同步开源。其开源版本包括Kimi-K2-Base(未经指令微调,适 配科研及自定义场景)与Kimi-K2-Instruct(通用指令微调版,面向对 请仔细阅读在本报告尾部的重要法律声明 5 行业研究 2025 年07 月22 日 话与智能体应用) 。 2.\", \"score\": 0.6554468, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"Kimi 迄今能力最强开源思考模型,月之暗面Kimi K2 Thinking 发布\", \"url\": \"https://www.ithome.com/0/895/484.htm\", \"content\": \"据介绍,该模型是月之暗面基于“模型即 Agent”理念训练的新一代 Thinking Agent,原生掌握“边思考,边使用工具”的能力。在人类最后的考试(Humanity's Last Exam)、自主网络浏览能力(BrowseComp)、复杂信息收集推理(SEAL-0)等多项基准测试中表现达到 SOTA 水平,并在 Agentic 搜索、Agentic 编程、写作和综合推理能力等方面取得全面提升。\\n\\n该模型无需人类干预,即可自主实现高达 300 轮的工具调用和持续稳定的多轮思考能力,从而帮助用户解决更复杂的问题。\\n\\nIT之家附 Hugging Face、ModelScope 部署链接如下:\\n\\n Hugging Face:\\n ModelScope:\\n\\n“人类最后的考试”是一项涵盖 100 多个专业领域的终极封闭式学术测试。在允许使用工具 —— 搜索、Python、网络浏览工具的同等情况下,Kimi K2 Thinking 在这项基准评测中取得了 44.9% 的 SOTA 成绩。 [...] 设置\\n\\n 日夜间\\n\\n 随系统\\n\\n 浅色\\n\\n 深色\\n 主题色\\n\\n 黑色\\n\\n投稿\\n\\n订阅\\n\\n RSS订阅\\n 收藏IT之家\\n\\n软媒应用\\n\\n App客户端\\n 要知App\\n 软媒魔方\\n\\n业界 手机 电脑 测评 视频 AI 苹果 iPhone 鸿蒙 软件\\n\\n智车 数码 学院 游戏 直播 5G 微软 Win10 Win11 专题\\n\\n首页 > 智能时代>人工智能\\n\\n# Kimi 迄今能力最强开源思考模型,月之暗面 Kimi K2 Thinking 发布\\n\\n2025/11/6 23:33:22 来源:IT之家 作者:清源 责编:清源\\n\\n评论:\\n\\n感谢IT之家网友 Domado 的线索投递!\\n\\nIT之家 11 月 6 日消息,月之暗面今晚推出 Kimi 迄今能力最强的开源思考模型 ——Kimi K2 Thinking。 [...] 下载IT之家APP,签到赚金币兑豪礼\\n\\n## 相关文章\\n\\n关键词:月之暗面,Kimi K2\\n\\n Kimi 全新 Agent 模式 OK Computer 启动测试:能开发网站、分析数据\\n 月之暗面 Kimi K2 宣布更新:上下文长度扩展至 256K,带来更快的 API\\n 月之暗面发布 Kimi K2 高速版:输出速度提升至每秒 40 Tokens\\n 月之暗面回应 Kimi K2 模型 API 速度慢:正在优化推理效率,也在加卡加机器\\n Perplexity CEO 称赞月之暗面,希望基于 Kimi K2 进行后训练\\n 月之暗面发布旗下首个万亿参数开源模型 Kimi K2,擅长代码与 Agentic 任务\\n\\n软媒旗下网站: IT之家 最会买 - 返利返现优惠券 iPhone之家 Win7之家 Win10之家 Win11之家\\n\\n软媒旗下软件: 软媒手机APP应用 魔方 最会买 要知\", \"score\": 0.61779, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"Kimi 突然开源K2 Thinking,300次连续自主调用工具太能打 - InfoQ\", \"url\": \"https://www.infoq.cn/article/V5xouoqewFspqev3RxUJ\", \"content\": \"_项目地址:__\\n\\nKimi K2 Thinking 的主要特点是:\\n\\n 深度思考和工具编排:经过端到端训练,将思维链推理与函数调用交错,实现持续数百步而不会漂移的自主研究、编码和编写工作流程。\\n\\n 原生 INT4 量化:在训练后阶段采用量化感知训练 (QAT),在低延迟模式下实现无损 2 倍加速。\\n\\n 稳定的长期代理:在多达 200-300 次连续工具调用中保持连贯的目标导向行为,超过之前在 30-50 步后退化的模型。\\n\\n据介绍,这一成果是月之暗面在测试时扩展技术领域的最新突破,同时实现了思维 tokens 与工具调用步骤的双重扩展。\\n\\n它在 “人类终极测试(HLE)”“BrowseComp” 等权威基准测试中取得顶尖性能,在推理、智能体搜索、编程、写作及通用能力等核心维度实现重大突破。其工具加持下的 HLE 测试得分达 44.9%,BrowseComp 测试得分 60.2%,都超越了 GPT-5、Claude Sonnet 4.5(Thinking)。\\n\\nImage 11 [...] 该模型支持 200-300 次连续工具调用,依托长周期规划与自适应推理机制,构建 “思考→搜索→浏览→思考→编程” 的动态循环。通过持续生成并优化假设、验证证据、推理分析,它能够将模糊开放的问题拆解为清晰可执行的子任务。\\n\\n写作能力\\n\\n创意写作:在内容完整性与丰富度上实现提升,对文体风格与指令的把控更精准,能自然流畅地驾驭多种语气与格式。写作内容更生动富有想象力,诗歌意象联想更深远,故事与剧本更具人文温度、情感张力与主题内核,表达的思想兼具深度与共鸣感。\\n\\n实用写作:推理深度、视角广度与指令遵循度显著增强,能精准响应提示要求,清晰系统地落实各项需求,且常对提及要点进行拓展以确保覆盖全面。在学术写作、研究报告及长篇分析类文稿中,擅长产出严谨规范、逻辑连贯且内容详实的作品,在学术与专业场景中表现尤为出色。\\n\\n个人与情感类写作:回应个人或情感类问题时更具同理心与平衡性,思考过程缜密且具体,能提供多元视角与可行方案。以务实、真诚的语气,帮助用户清晰、审慎地应对复杂决策。\\n\\n量化优化\", \"score\": 0.534443, \"published_date\": \"\"}], \"total_results\": 5}",
|
||
"timestamp": "2025-11-09T11:33:36.886181",
|
||
"tool_call_id": "web_search:0",
|
||
"name": "web_search"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "现在让我搜索更具体的技术细节,特别是关于如何控制模型的思考过程:",
|
||
"timestamp": "2025-11-09T11:33:39.467941"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-11-09T11:33:39.484837",
|
||
"tool_calls": [
|
||
{
|
||
"id": "web_search:1",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "web_search",
|
||
"arguments": "{\"max_results\": 5, \"query\": \"kimi-k2-thinking reasoning_content 参数控制 temperature max_tokens API文档\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: kimi-k2-thinking reasoning_content 参数控制 temperature max_tokens API文档\\n📅 搜索时间: 2025-11-09T11:33:43.183894\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nThe Kimi-K2-Thinking model uses temperature = 1.0 for best performance, max_tokens ≥ 16,000 for full reasoning content, and supports long-horizon reasoning and tool invocation.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Using the kimi-k2-thinking model - Moonshot AI Open Platform\\n 🔗 https://platform.moonshot.ai/docs/guide/use-kimi-k2-thinking-model\\n 📄 Include the entire reasoning content from the context (the reasoning\\\\_content field) in your input. The model will decide which parts are necessary and forward them for further reasoning.\\n Set max\\\\_to...\\n\\n2. moonshotai/Kimi-K2-Thinking - Hugging Face\\n 🔗 https://huggingface.co/moonshotai/Kimi-K2-Thinking\\n 📄 ```\\ndef simple_chat(client: openai.OpenAI, model_name: str):\\n messages = [\\n {\\\"role\\\": \\\"system\\\", \\\"content\\\": \\\"You are Kimi, an AI assistant created by Moonshot AI.\\\"},\\n {\\\"role\\\": \\\"user\\\", \\\"...\\n\\n3. Kimi K2 Thinking - API, Providers, Stats - OpenRouter\\n 🔗 https://openrouter.ai/moonshotai/kimi-k2-thinking\\n 📄 Kimi K2 Thinking is Moonshot AI’s most advanced open reasoning model to date, extending the K2 series into agentic, long-horizon reasoning. Built on the trillion-parameter Mixture-of-Experts (MoE) arc...\\n\\n4. Kimi K2 is the large language model series developed by Moonshot ...\\n 🔗 https://github.com/MoonshotAI/Kimi-K2\\n 📄 Once the local inference service is set up, you can interact with it through the chat endpoint:\\n\\n```\\ndef simple_chat client OpenAI model_name str messages = \\\"role\\\" \\\"system\\\" \\\"content\\\"\\\"You are Kimi, an ...\\n\\n5. How to Use Kimi K2 Thinking API - Apidog\\n 🔗 https://apidog.com/blog/kimi-k2-thinking-api/\\n 📄 Delving into the technical underpinnings, Kimi K2 Thinking employs a Mixture-of-Experts (MoE) architecture that echoes DeepSeek R1's design but scales ambitiously for superior efficiency. Like DeepSee...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"kimi-k2-thinking reasoning_content 参数控制 temperature max_tokens API文档\", \"results\": [{\"index\": 1, \"title\": \"Using the kimi-k2-thinking model - Moonshot AI Open Platform\", \"url\": \"https://platform.moonshot.ai/docs/guide/use-kimi-k2-thinking-model\", \"content\": \"Include the entire reasoning content from the context (the reasoning\\\\_content field) in your input. The model will decide which parts are necessary and forward them for further reasoning.\\n Set max\\\\_tokens ≥ 16,000 to ensure the full reasoning\\\\_content and final content can be returned without truncation.\\n Set temperature = 1.0 to get the best performance. [...] In streaming output (`stream=True`), the `reasoning_content` field will always appear before the `content` field. In your business logic, you can detect if the `content` field has been output to determine if the reasoning (inference process) is finished.\\n Tokens in `reasoning_content` are also controlled by the `max_tokens` parameter: the sum of tokens in `reasoning_content` and `content` must be less than or equal to `max_tokens`. [...] ```\\n$ curl \\\\\\n -H \\\"Content-Type: application/json\\\" \\\\\\n -H \\\"Authorization: Bearer $MOONSHOT_API_KEY\\\" \\\\\\n -d '{\\n \\\"model\\\": \\\"kimi-k2-thinking\\\",\\n \\\"messages\\\": [\\n {\\\"role\\\": \\\"user\\\", \\\"content\\\": \\\"hello\\\"}\\n ],\\n \\\"temperature\\\": 1.0\\n }'\\n \\n```\\n\\n## \\n\\nIn the `kimi-k2-thinking` model API response, we use the `reasoning_content` field as the carrier for the model's reasoning. About the `reasoning_content` field:\", \"score\": 0.80070794, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"moonshotai/Kimi-K2-Thinking - Hugging Face\", \"url\": \"https://huggingface.co/moonshotai/Kimi-K2-Thinking\", \"content\": \"```\\ndef simple_chat(client: openai.OpenAI, model_name: str):\\n messages = [\\n {\\\"role\\\": \\\"system\\\", \\\"content\\\": \\\"You are Kimi, an AI assistant created by Moonshot AI.\\\"},\\n {\\\"role\\\": \\\"user\\\", \\\"content\\\": [{\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"which one is bigger, 9.11 or 9.9? think carefully.\\\"}]},\\n ]\\n response = client.chat.completions.create(\\n model=model_name,\\n messages=messages,\\n stream=False,\\n temperature=1.0,\\n max_tokens=4096\\n ) [...] ```\\n\\n> The recommended temperature for Kimi-K2-Thinking is `temperature = 1.0`.\\n> If no special instructions are required, the system prompt above is a good default.\\n\\n### Tool Calling\\n\\nKimi-K2-Thinking has the same tool calling settings as Kimi-K2-Instruct.\\n\\nTo enable them, you need to pass the list of available tools in each request, then the model will autonomously decide when and how to invoke them.\\n\\nThe following example demonstrates calling a weather tool end-to-end: [...] 2.1. All benchmarks were evaluated at temperature = 1.0 and 256 k context length for K2 Thinking, except for SciCode, for which we followed the official temperature setting of 0.0. \\n 2.2. HLE (no tools), AIME25, HMMT25, and GPQA were capped at a 96k thinking-token budget, while IMO-Answer Bench, LiveCodeBench and OJ-Bench were capped at a 128k thinking-token budget. Longform Writing was capped at a 32k completion-token budget.\", \"score\": 0.64880073, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"Kimi K2 Thinking - API, Providers, Stats - OpenRouter\", \"url\": \"https://openrouter.ai/moonshotai/kimi-k2-thinking\", \"content\": \"Kimi K2 Thinking is Moonshot AI’s most advanced open reasoning model to date, extending the K2 series into agentic, long-horizon reasoning. Built on the trillion-parameter Mixture-of-Experts (MoE) architecture introduced in Kimi K2, it activates 32 billion parameters per forward pass and supports 256 k-token context windows. The model is optimized for persistent step-by-step thought, dynamic tool invocation, and complex reasoning workflows that span hundreds of turns. It interleaves\", \"score\": 0.63939893, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"Kimi K2 is the large language model series developed by Moonshot ...\", \"url\": \"https://github.com/MoonshotAI/Kimi-K2\", \"content\": \"Once the local inference service is set up, you can interact with it through the chat endpoint:\\n\\n```\\ndef simple_chat client OpenAI model_name str messages = \\\"role\\\" \\\"system\\\" \\\"content\\\"\\\"You are Kimi, an AI assistant created by Moonshot AI.\\\" \\\"role\\\" \\\"user\\\" \\\"content\\\" \\\"type\\\" \\\"text\\\" \\\"text\\\"\\\"Please give a brief self-introduction.\\\" response = client chat completions create model = model_name messages = messages stream = False temperature =0.6 max_tokens = 256 print response choices 0 message content\\n``` [...] OpenAI model_name str messages = \\\"role\\\" \\\"system\\\" \\\"content\\\"\\\"You are Kimi, an AI assistant created by Moonshot AI.\\\" \\\"role\\\" \\\"user\\\" \\\"content\\\"\\\"What's the weather like in Beijing today? Use the tool to check.\\\" finish_reason = None while finish_reason is None or finish_reason == \\\"tool_calls\\\" completion = client chat completions create model = model_name messages = messages temperature =0.6 tools = tools # tool list defined above tool_choice = \\\"auto\\\" choice = completion choices 0 finish_reason = choice [...] Note\\n\\nThe recommended temperature for Kimi-K2-Instruct is `temperature = 0.6`. If no special instructions are required, the system prompt above is a good default.\\n\\n### Tool Calling\\n\\nKimi-K2-Instruct has strong tool-calling capabilities. To enable them, you need to pass the list of available tools in each request, then the model will autonomously decide when and how to invoke them.\\n\\nThe following example demonstrates calling a weather tool end-to-end:\", \"score\": 0.5694942, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"How to Use Kimi K2 Thinking API - Apidog\", \"url\": \"https://apidog.com/blog/kimi-k2-thinking-api/\", \"content\": \"Delving into the technical underpinnings, Kimi K2 Thinking employs a Mixture-of-Experts (MoE) architecture that echoes DeepSeek R1's design but scales ambitiously for superior efficiency. Like DeepSeek R1's 671 billion parameters, Kimi K2 Thinking leverages sparse activation to route inputs through specialized experts, minimizing compute waste. However, it expands the vocabulary to 160,000 tokens—up from DeepSeek R1's 129,000—enabling richer handling of multilingual and domain-specific terms, [...] As AI models push the boundaries of reasoning and agentic capabilities, Kimi K2 Thinking emerges as a standout innovation from Moonshot AI, blending open-source accessibility with enterprise-grade performance. This trillion-parameter thinking agent model redefines how developers interact with large language models, particularly through its robust API. Designed for tasks requiring deep inference and tool chaining, the Kimi K2 Thinking API allows seamless integration into applications, from [...] Kimi K2 Thinking represents Moonshot AI's bold step forward in open-source AI, launching as a specialized thinking agent model optimized for sequential reasoning and tool use. At its core, Kimi K2 Thinking is built to simulate human-like deliberation, processing queries through extended \\\"thinking\\\" tokens that enable multi-turn tool interactions without constant human input. This model, available via API for developers, excels in environments demanding prolonged context retention and adaptive\", \"score\": 0.5631623, \"published_date\": \"\"}], \"total_results\": 5}",
|
||
"timestamp": "2025-11-09T11:33:43.185689",
|
||
"tool_call_id": "web_search:1",
|
||
"name": "web_search"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "让我提取更详细的技术文档内容:",
|
||
"timestamp": "2025-11-09T11:33:46.295720"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-11-09T11:33:46.309746",
|
||
"tool_calls": [
|
||
{
|
||
"id": "extract_webpage:2",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "extract_webpage",
|
||
"arguments": "{\"url\": \"https://platform.moonshot.ai/docs/guide/use-kimi-k2-thinking-model\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"url\": \"https://platform.moonshot.ai/docs/guide/use-kimi-k2-thinking-model\", \"content\": \"🌐 网页内容 (10344 字符):\\n📍 URL: https://platform.moonshot.ai/docs/guide/use-kimi-k2-thinking-model\\n==================================================\\n🎉 New kimi-k2-thinking model released! Now supports multi-step reasoning with tool use. Try it now!\\n\\nDocs\\n\\nGetting Started Guide\\n\\nUse kimi-k2-thinking Model\\n\\n# Using the kimi-k2-thinking model\\n\\n> The `kimi-k2-thinking` model is a general-purpose agentic reasoning model developed by Moonshot AI. Thanks to its strength in deep reasoning and multi-turn tool use, it can solve even the hardest problems.\\n\\n## \\n\\nYou can simply use it by switching the `model` parameter:\\n\\n```\\n$ curl https://api.moonshot.cn/v1/chat/completions \\\\\\n -H \\\"Content-Type: application/json\\\" \\\\\\n -H \\\"Authorization: Bearer $MOONSHOT_API_KEY\\\" \\\\\\n -d '{\\n \\\"model\\\": \\\"kimi-k2-thinking\\\",\\n \\\"messages\\\": [\\n {\\\"role\\\": \\\"user\\\", \\\"content\\\": \\\"hello\\\"}\\n ],\\n \\\"temperature\\\": 1.0\\n }'\\n \\n```\\n\\n## \\n\\nIn the `kimi-k2-thinking` model API response, we use the `reasoning_content` field as the carrier for the model's reasoning. About the `reasoning_content` field:\\n\\n* In the OpenAI SDK, `ChoiceDelta` and `ChatCompletionMessage` types do not provide a `reasoning_content` field directly, so you cannot access it via `.reasoning_content`. You must use `hasattr(obj, \\\"reasoning_content\\\")` to check if the field exists, and if so, use `getattr(obj, \\\"reasoning_content\\\")` to retrieve its value.\\n* If you use other frameworks or directly interface with the HTTP API, you can directly obtain the `reasoning_content` field at the same level as the `content` field.\\n* In streaming output (`stream=True`), the `reasoning_content` field will always appear before the `content` field. In your business logic, you can detect if the `content` field has been output to determine if the reasoning (inference process) is finished.\\n* Tokens in `reasoning_content` are also controlled by the `max_tokens` parameter: the sum of tokens in `reasoning_content` and `content` must be less than or equal to `max_tokens`.\\n\\n## \\n\\n`kimi-k2-thinking` is designed to perform deep reasoning across multiple tool calls, enabling it to tackle highly complex tasks.\\n\\n### \\n\\nTo get reliable results, always follow these rules when calling the kimi-k2-thinking model :\\n\\n* Include the entire reasoning content from the context (the reasoning\\\\_content field) in your input. The model will decide which parts are necessary and forward them for further reasoning.\\n* Set max\\\\_tokens ≥ 16,000 to ensure the full reasoning\\\\_content and final content can be returned without truncation.\\n* **Set temperature = 1.0 to get the best performance.**\\n* Enable streaming (stream = true). Because kimi-k2-thinking returns both reasoning\\\\_content and regular content, the response is larger than usual. Streaming delivers a better user experience and helps avoid network-timeout issues.\\n\\n### \\n\\nWe walk through a complete example that shows how to properly use kimi-k2-thinking together with official tools for multi-step tool call and extended reasoning.\\n\\nThe example below demonstrates a \\\"Daily News Report Generation\\\" scenario. The model will sequentially call official tools like `date` (to get the date) and `web_search` (to search today's news), and will present deep reasoning throughout this process:\\n\\n```\\nimport os\\nimport json\\nimport httpx\\nimport openai\\n \\n \\nclass FormulaChatClient:\\n def __init__(self, base_url: str, api_key: str):\\n \\\"\\\"\\\"Initialize Formula client\\\"\\\"\\\"\\n self.base_url = base_url\\n self.api_key = api_key\\n self.openai = openai.Client(\\n base_url=base_url,\\n api_key=api_key,\\n )\\n self.httpx = httpx.Client(\\n base_url=base_url,\\n headers={\\\"Authorization\\\": f\\\"Bearer {api_key}\\\"},\\n timeout=30.0,\\n )\\n self.model = \\\"kimi-k2-thinking\\\"\\n \\n def get_tools(self, formula_uri: str):\\n \\\"\\\"\\\"Get tool definitions from Formula API\\\"\\\"\\\"\\n response = self.httpx.get(f\\\"/formulas/{formula_uri}/tools\\\")\\n response.raise_for_status()\\n \\n try:\\n return response.json().get(\\\"tools\\\", [])\\n except json.JSONDecodeError as e:\\n print(f\\\"Error: Unable to parse JSON (status code: {response.status_code})\\\")\\n print(f\\\"Response content: {response.text[:500]}\\\")\\n raise\\n \\n def call_tool(self, formula_uri: str, function: str, args: dict):\\n \\\"\\\"\\\"Call an official tool\\\"\\\"\\\"\\n response = self.httpx.post(\\n f\\\"/formulas/{formula_uri}/fibers\\\",\\n json={\\\"name\\\": function, \\\"arguments\\\": json.dumps(args)},\\n )\\n response.raise_for_status()\\n fiber = response.json()\\n \\n if fiber.get(\\\"status\\\", \\\"\\\") == \\\"succeeded\\\":\\n return fiber[\\\"context\\\"].get(\\\"output\\\") or fiber[\\\"context\\\"].get(\\\"encrypted_output\\\")\\n \\n if \\\"error\\\" in fiber:\\n return f\\\"Error: {fiber['error']}\\\"\\n if \\\"error\\\" in fiber.get(\\\"context\\\", {}):\\n return f\\\"Error: {fiber['context']['error']}\\\"\\n return \\\"Error: Unknown error\\\"\\n \\n def close(self):\\n \\\"\\\"\\\"Close the client connection\\\"\\\"\\\"\\n self.httpx.close()\\n \\n \\n# Initialize client\\nbase_url = os.getenv(\\\"MOONSHOT_BASE_URL\\\", \\\"https://api.moonshot.cn/v1\\\")\\napi_key = os.getenv(\\\"MOONSHOT_API_KEY\\\")\\n \\nif not api_key:\\n raise ValueError(\\\"MOONSHOT_API_KEY environment variable not set. Please set your API key.\\\")\\n \\nprint(f\\\"Base URL: {base_url}\\\")\\nprint(f\\\"API Key: {api_key[:10]}...{api_key[-10:] if len(api_key) > 20 else api_key}\\\\n\\\")\\n \\nclient = FormulaChatClient(base_url, api_key)\\n \\n# Define the official tool Formula URIs to use\\nformula_uris = [\\n \\\"moonshot/date:latest\\\",\\n \\\"moonshot/web-search:latest\\\"\\n]\\n \\n# Load all tool definitions and build mapping\\nprint(\\\"Loading official tools...\\\")\\nall_tools = []\\ntool_to_uri = {} # function.name -> formula_uri\\n \\nfor uri in formula_uris:\\n try:\\n tools = client.get_tools(uri)\\n for tool in tools:\\n func = tool.get(\\\"function\\\")\\n if func:\\n func_name = func.get(\\\"name\\\")\\n if func_name:\\n tool_to_uri[func_name] = uri\\n all_tools.append(tool)\\n print(f\\\" Loaded tool: {func_name} from {uri}\\\")\\n except Exception as e:\\n print(f\\\" Warning: Failed to load tool {uri}: {e}\\\")\\n continue\\n \\nprint(f\\\"Loaded {len(all_tools)} tools in total\\\\n\\\")\\n \\nif not all_tools:\\n raise ValueError(\\\"No tools loaded. Please check API key and network connection.\\\")\\n \\n# Initialize message list\\nmessages = [\\n {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": \\\"You are Kimi, a professional news analyst. You excel at collecting, analyzing, and organizing information to generate high-quality news reports.\\\",\\n },\\n]\\n \\n# User request to generate today's news report\\nuser_request = \\\"Please help me generate a daily news report including important technology, economy, and society news.\\\"\\nmessages.append({\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": user_request\\n})\\n \\nprint(f\\\"User request: {user_request}\\\\n\\\")\\n \\n# Begin multi-turn conversation loop\\nmax_iterations = 10 # Prevent infinite loops\\nfor iteration in range(max_iterations):\\n try:\\n completion = client.openai.chat.completions.create(\\n model=client.model,\\n messages=messages,\\n max_tokens=1024 * 32,\\n tools=all_tools,\\n temperature=1.0,\\n )\\n except openai.AuthenticationError as e:\\n print(f\\\"Authentication error: {e}\\\")\\n print(\\\"Please check if the API key is correct and has the required permissions\\\")\\n raise\\n except Exception as e:\\n print(f\\\"Error while calling the model: {e}\\\")\\n raise\\n \\n # Get response\\n message = completion.choices[0].message\\n \\n # Print reasoning process\\n if hasattr(message, \\\"reasoning_content\\\"):\\n print(f\\\"=============Reasoning round {iteration + 1} starts=============\\\")\\n reasoning = getattr(message, \\\"reasoning_content\\\")\\n if reasoning:\\n print(reasoning[:500] + \\\"...\\\" if len(reasoning) > 500 else reasoning)\\n print(f\\\"=============Reasoning round {iteration + 1} ends=============\\\\n\\\")\\n \\n # Add assistant message to context (preserve reasoning_content)\\n messages.append(message)\\n \\n # If the model did not call any tools, conversation is done\\n if not message.tool_calls:\\n print(\\\"=============Final Answer=============\\\")\\n print(message.content)\\n break\\n \\n # Handle tool calls\\n print(f\\\"The model decided to call {len(message.tool_calls)} tool(s):\\\\n\\\")\\n \\n for tool_call in message.tool_calls:\\n func_name = tool_call.function.name\\n args = json.loads(tool_call.function.arguments)\\n \\n print(f\\\"Calling tool: {func_name}\\\")\\n print(f\\\"Arguments: {json.dumps(args, ensure_ascii=False, indent=2)}\\\")\\n \\n # Get corresponding formula_uri\\n formula_uri = tool_to_uri.get(func_name)\\n if not formula_uri:\\n print(f\\\"Error: Could not find Formula URI for tool {func_name}\\\")\\n continue\\n \\n # Call the tool\\n result = client.call_tool(formula_uri, func_name, args)\\n \\n # Print result (truncate if too long)\\n if len(str(result)) > 200:\\n print(f\\\"Tool result: {str(result)[:200]}...\\\\n\\\")\\n else:\\n print(f\\\"Tool result: {result}\\\\n\\\")\\n \\n # Add tool result to message list\\n tool_message = {\\n \\\"role\\\": \\\"tool\\\",\\n \\\"tool_call_id\\\": tool_call.id,\\n \\\"name\\\": func_name,\\n \\\"content\\\": result\\n }\\n messages.append(tool_message)\\n \\nprint(\\\"\\\\nConversation completed!\\\")\\n \\n# Cleanup\\nclient.close()\\n```\\n\\nThis process demonstrates how the `kimi-k2-thinking` model uses deep reasoning to plan and execute complex multi-step tasks, with detailed reasoning steps (`reasoning_content`) preserved in the context to ensure accurate tool use at every stage.\\n\\n## \\n\\n### \\n\\nA: Keeping the `reasoning_content` ensures the model maintains reasoning continuity in multi-turn conversations, especially when calling tools. The server will automatically handle these fields; users do not need to manage them manually.\\n\\n### \\n\\nA: Yes, `reasoning_content` counts towards your input/output token quota. For detailed pricing, please refer to MoonshotAI's pricing documentation.\\n\\n[Kimi K2 Quickstart](/docs/guide/kimi-k2-quickstart \\\"Kimi K2 Quickstart\\\")[Quickstart with Kimi API](/docs/guide/start-using-kimi-api \\\"Quickstart with Kimi API\\\")\\n==================================================\"}",
|
||
"timestamp": "2025-11-09T11:33:48.124700",
|
||
"tool_call_id": "extract_webpage:2",
|
||
"name": "extract_webpage"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "基于搜索到的技术文档,我来详细回答你关于月之暗面Kimi模型如何控制思考的问题:\n\n## 🎯 Kimi模型思考控制的核心机制\n\n### 1. **专用思考模型架构**\nKimi有一个专门的思考模型叫做 `kimi-k2-thinking`,这是与普通对话模型不同的架构:\n\n- **思考内容字段**:通过专门的 `reasoning_content` 字段承载模型的思考过程\n- **双流输出**:先输出思考内容(`reasoning_content`),再输出最终答案(`content`)\n- **工具调用集成**:支持\"边思考边使用工具\"的混合模式\n\n### 2. **关键控制参数**\n\n#### **温度参数 (Temperature)**\n```python\n# 推荐设置\ntemperature = 1.0 # 获得最佳推理性能\n```\n- **temperature=1.0**:官方推荐的最佳推理性能设置\n- **较低温度**(如0.3-0.7):思考过程更保守、确定性更强\n- **较高温度**(如1.2-1.5):思考过程更发散、创造性更强\n\n#### **Token限制参数**\n```python\nmax_tokens ≥ 16000 # 确保完整的思考和回答\n```\n- 必须设置足够大的token限制,否则思考过程会被截断\n- `reasoning_content` + `content` 的总和不能超过max_tokens\n\n### 3. **思考过程的实际控制**\n\n#### **流式输出的识别**\n```python\n# 在流式输出中识别思考结束\nif hasattr(message, \"reasoning_content\"):\n reasoning = getattr(message, \"reasoning_content\")\n # 思考过程内容\n \n# 当content字段出现时,表示思考结束\nif hasattr(message, \"content\") and message.content:\n # 最终答案\n```\n\n#### **多轮对话中的思考连续性**\n- 模型会自动保留`reasoning_content`确保多轮推理的连贯性\n- 支持高达300次连续工具调用而不\"忘记\"目标\n\n### 4. **实际使用建议**\n\n#### **强制深度思考**\n```python\n# 在提示词中明确要求\n\"请仔细思考,展示完整的推理过程\"\n\"请逐步分析,给出详细的思考步骤\"\n```\n\n#### **抑制过度思考**\n```python\n# 在提示词中要求简洁\n\"请直接给出答案,无需详细解释\"\n\"简单回答即可,不需要推理过程\"\n```\n\n#### **思考成本控制**\n- `reasoning_content`的tokens会计费\n- 可以通过max_tokens限制最大思考深度\n- 流式输出可以及时展示思考进度\n\n### 5. **与普通模型的区别**\n- **普通Kimi模型**:直接输出答案,没有显式的思考过程\n- **Kimi思考模型**:显式展示思考过程,支持复杂多步推理\n\n这种设计让开发者可以:\n- 看到模型的\"思维过程\"\n- 控制推理的深度和广度 \n- 在复杂任务中获得更可靠的结果\n\n需要我帮你查找更具体的API调用示例吗?",
|
||
"timestamp": "2025-11-09T11:34:06.856337"
|
||
}
|
||
],
|
||
"todo_list": null,
|
||
"metadata": {
|
||
"project_path": "/opt/agent/agents/users/jojo/project",
|
||
"project_relative_path": "users/jojo/project",
|
||
"thinking_mode": false,
|
||
"total_messages": 13,
|
||
"total_tools": 6,
|
||
"status": "active"
|
||
},
|
||
"token_statistics": {
|
||
"total_input_tokens": 51252,
|
||
"total_output_tokens": 1732,
|
||
"updated_at": "2025-11-09T11:34:33.659712"
|
||
}
|
||
} |