175 lines
5.4 KiB
Python
175 lines
5.4 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
这是一个复杂的Python测试文件
|
||
用于测试文件修改工具对Python代码的处理能力
|
||
包含多层嵌套结构、复杂注释和各种缩进
|
||
"""
|
||
|
||
import os
|
||
import sys
|
||
from typing import Dict, List, Optional
|
||
|
||
|
||
class DataProcessor:
|
||
"""
|
||
数据处理类
|
||
用于处理和分析各种数据类型
|
||
"""
|
||
|
||
def __init__(self, config: Dict[str, any]):
|
||
"""
|
||
初始化数据处理器的配置
|
||
|
||
Args:
|
||
config: 配置参数字典
|
||
- input_path: 输入文件路径
|
||
- output_path: 输出文件路径
|
||
- processing_mode: 处理模式 ('batch' or 'stream')
|
||
"""
|
||
self.config = config
|
||
self.data_cache = []
|
||
self.processing_stats = {
|
||
'total_items': 0,
|
||
'processed_items': 0,
|
||
'failed_items': 0
|
||
}
|
||
|
||
def process_data(self, data_source: str) -> List[Dict]:
|
||
"""
|
||
处理数据的主要方法(增强版)
|
||
|
||
Args:
|
||
data_source: 数据源路径
|
||
|
||
Returns:
|
||
List[Dict]: 处理后的数据列表
|
||
|
||
Raises:
|
||
FileNotFoundError: 当输入文件不存在时
|
||
ValueError: 当数据格式无效时
|
||
IOError: 当文件读取失败时
|
||
"""
|
||
# 检查输入文件是否存在
|
||
if not os.path.exists(data_source):
|
||
raise FileNotFoundError(f"数据源文件不存在: {data_source}")
|
||
|
||
processed_data = []
|
||
|
||
try:
|
||
# 读取数据文件
|
||
with open(data_source, 'r', encoding='utf-8') as file:
|
||
raw_data = file.readlines()
|
||
|
||
# 处理每一行数据(增强处理逻辑)
|
||
for line_num, line in enumerate(raw_data, 1):
|
||
try:
|
||
# 跳过空行、注释行和无效行
|
||
stripped_line = line.strip()
|
||
if not stripped_line or stripped_line.startswith('#') or stripped_line.startswith('//'):
|
||
continue
|
||
|
||
# 增强的数据解析逻辑
|
||
data_item = self._parse_line(stripped_line)
|
||
if data_item and self._validate_item(data_item):
|
||
processed_data.append(data_item)
|
||
self.processing_stats['processed_items'] += 1
|
||
print(f"成功处理第{line_num}行数据")
|
||
|
||
except Exception as e:
|
||
# 增强的错误处理
|
||
self.processing_stats['failed_items'] += 1
|
||
print(f"❌ 警告: 第{line_num}行处理失败: {str(e)}")
|
||
print(f" 问题行内容: {line.strip()}")
|
||
continue
|
||
|
||
self.processing_stats['total_items'] = len(raw_data)
|
||
|
||
except Exception as e:
|
||
# 处理文件读取错误
|
||
print(f"错误: 文件处理失败: {str(e)}")
|
||
raise
|
||
|
||
return processed_data
|
||
|
||
def _parse_line(self, line: str) -> Optional[Dict]:
|
||
"""
|
||
增强的单行数据解析方法(私有)
|
||
|
||
Args:
|
||
line: 单行文本数据
|
||
|
||
Returns:
|
||
Optional[Dict]: 解析后的数据字典,失败时返回None
|
||
|
||
Raises:
|
||
ValueError: 当数据格式无效时
|
||
"""
|
||
# 增强的CSV格式解析,支持引号和转义
|
||
import csv
|
||
import io
|
||
|
||
try:
|
||
# 使用csv模块处理复杂的CSV格式
|
||
reader = csv.reader(io.StringIO(line))
|
||
parts = next(reader)
|
||
|
||
if len(parts) < 3:
|
||
return None
|
||
|
||
# 数据验证和清洗
|
||
return {
|
||
'id': int(parts[0].strip()),
|
||
'name': parts[1].strip(),
|
||
'value': float(parts[2].strip()),
|
||
'status': parts[3].strip() if len(parts) > 3 else 'active',
|
||
'parsed_at': self._get_timestamp()
|
||
}
|
||
|
||
except (ValueError, StopIteration):
|
||
return None
|
||
|
||
|
||
def main():
|
||
"""
|
||
主函数入口
|
||
演示如何使用DataProcessor类
|
||
"""
|
||
# 配置参数
|
||
config = {
|
||
'input_path': 'data/input.csv',
|
||
'output_path': 'data/output.json',
|
||
'processing_mode': 'batch'
|
||
}
|
||
|
||
# 创建处理器实例
|
||
processor = DataProcessor(config)
|
||
|
||
try:
|
||
# 处理数据
|
||
results = processor.process_data(config['input_path'])
|
||
|
||
# 输出处理结果
|
||
print(f"数据处理完成!")
|
||
print(f"总项目数: {processor.processing_stats['total_items']}")
|
||
print(f"成功处理: {processor.processing_stats['processed_items']}")
|
||
print(f"失败项目: {processor.processing_stats['failed_items']}")
|
||
|
||
# 保存结果到输出文件
|
||
import json
|
||
with open(config['output_path'], 'w', encoding='utf-8') as f:
|
||
json.dump(results, f, ensure_ascii=False, indent=2)
|
||
|
||
print(f"结果已保存到: {config['output_path']}")
|
||
|
||
except Exception as e:
|
||
print(f"程序执行失败: {str(e)}")
|
||
sys.exit(1)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# 程序入口点
|
||
main()
|
||
|
||
|