agent/data/conversations/conv_20250925_094102_391.json
2025-11-14 16:44:12 +08:00

662 lines
112 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"id": "conv_20250925_094102_391",
"title": "当前路径规划文件夹里有两文件但都很长我现在需要做一个新算法你可以看到在zongti文件里不管调...",
"created_at": "2025-09-25T09:41:02.391491",
"updated_at": "2025-09-26T15:10:49.817102",
"messages": [
{
"role": "user",
"content": "当前路径规划文件夹里有两文件但都很长我现在需要做一个新算法你可以看到在zongti文件里不管调用什么算法最后都用的是遗传我打算先做模拟退火算法由于这两文件太长请你先聚焦两个文件获取其中的关键部分的信息比如接口的输入输出参数目前需要实现的效果记录下来后取消聚焦要保证记录下来的信息足够你写接下来的算法\n这个算法是跑在服务器上的不用你测试你需要添加到配置文件的内容直接告诉我就行你只需要保证算法的高明有效\n请你先了解当前的两个文件",
"timestamp": "2025-09-25T09:56:31.915179"
},
{
"role": "assistant",
"content": "我来帮你分析这两个路径规划文件,了解当前的结构和接口,然后为你设计模拟退火算法。",
"timestamp": "2025-09-25T09:56:34.424214"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:56:34.427181",
"tool_calls": [
{
"id": "focus_file:0",
"index": 0,
"type": "function",
"function": {
"name": "focus_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"message\": \"文件已聚焦: /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\", \"focused_files\": [\"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"], \"file_size\": 44540}",
"timestamp": "2025-09-25T09:56:36.232944",
"tool_call_id": "focus_file:0",
"name": "focus_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:56:37.621697",
"tool_calls": [
{
"id": "focus_file:1",
"index": 0,
"type": "function",
"function": {
"name": "focus_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"message\": \"文件已聚焦: /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\", \"focused_files\": [\"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\", \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"], \"file_size\": 121363}",
"timestamp": "2025-09-25T09:56:39.428135",
"tool_call_id": "focus_file:1",
"name": "focus_file"
},
{
"role": "assistant",
"content": "现在让我分析这两个文件的关键信息。首先查看zongti.py的主要结构和接口",
"timestamp": "2025-09-25T09:56:42.325707"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:56:42.327503",
"tool_calls": [
{
"id": "run_command:2",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -n \\\"def \\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py | head -20\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"57:def get_or_create_planner(facilities: Dict, grid_file: str = None, slope_file: str = None,\\n93:def are_grids_adjacent(grid1: str, grid2: str) -> bool:\\n106:def get_8_neighbors(grid: str) -> List[str]:\\n121:def post_process_road_connections(road_data: Dict, enable_logging: bool = True) -> Dict:\\n233:def smooth_intercity_roads(road_data: Dict, enable_logging: bool = True) -> Dict:\\n296:def smooth_zigzag_path(coords: List[Tuple[int, int]], max_zigzag_size: int = 4) -> List[Tuple[int, int]]:\\n340:def detect_zigzag_segment(coords: List[Tuple[int, int]], start: int, max_size: int) -> int:\\n411:def create_smooth_diagonal(start: Tuple[int, int], end: Tuple[int, int]) -> List[Tuple[int, int]]:\\n445:def find_path_smart(planner: SimplifiedPathPlanner, from_building: str,\\n537:def build_road_graph_smart(all_roads: Dict, facilities: Dict) -> Dict[str, Set[str]]:\\n582:def find_route_in_graph_smart(from_grids: List[str], to_grids: List[str],\\n642:def synchronized_request(lock):\\n643: def decorator(func):\\n644: def wrapper(*args, **kwargs):\\n667:def yingdibuju():\\n757:def sheshibuju():\\n814:def shigong_router():\\n896:def plan_full_network():\\n1021: def filter_road_grids(road_grids):\\n1112:def find_path():\\n\", \"stdout\": \"57:def get_or_create_planner(facilities: Dict, grid_file: str = None, slope_file: str = None,\\n93:def are_grids_adjacent(grid1: str, grid2: str) -> bool:\\n106:def get_8_neighbors(grid: str) -> List[str]:\\n121:def post_process_road_connections(road_data: Dict, enable_logging: bool = True) -> Dict:\\n233:def smooth_intercity_roads(road_data: Dict, enable_logging: bool = True) -> Dict:\\n296:def smooth_zigzag_path(coords: List[Tuple[int, int]], max_zigzag_size: int = 4) -> List[Tuple[int, int]]:\\n340:def detect_zigzag_segment(coords: List[Tuple[int, int]], start: int, max_size: int) -> int:\\n411:def create_smooth_diagonal(start: Tuple[int, int], end: Tuple[int, int]) -> List[Tuple[int, int]]:\\n445:def find_path_smart(planner: SimplifiedPathPlanner, from_building: str,\\n537:def build_road_graph_smart(all_roads: Dict, facilities: Dict) -> Dict[str, Set[str]]:\\n582:def find_route_in_graph_smart(from_grids: List[str], to_grids: List[str],\\n642:def synchronized_request(lock):\\n643: def decorator(func):\\n644: def wrapper(*args, **kwargs):\\n667:def yingdibuju():\\n757:def sheshibuju():\\n814:def shigong_router():\\n896:def plan_full_network():\\n1021: def filter_road_grids(road_grids):\\n1112:def find_path():\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -n \\\"def \\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py | head -20\"}",
"timestamp": "2025-09-25T09:56:44.131585",
"tool_call_id": "run_command:2",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:56:45.896046",
"tool_calls": [
{
"id": "run_command:3",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -n \\\"class \\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py | head -10\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"\", \"stdout\": \"\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -n \\\"class \\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py | head -10\"}",
"timestamp": "2025-09-25T09:56:47.700026",
"tool_call_id": "run_command:3",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:56:49.213642",
"tool_calls": [
{
"id": "run_command:4",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -n \\\"遗传\\\\|genetic\\\\|Genetic\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"686: \\\"yc\\\": \\\"遗传\\\",\\n764: \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n820: \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n\", \"stdout\": \"686: \\\"yc\\\": \\\"遗传\\\",\\n764: \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n820: \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -n \\\"遗传\\\\|genetic\\\\|Genetic\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}",
"timestamp": "2025-09-25T09:56:51.019823",
"tool_call_id": "run_command:4",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:56:52.691324",
"tool_calls": [
{
"id": "run_command:5",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 10 -B 5 \\\"nsga3\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"\\nlogging.basicConfig(level=logging.DEBUG)\\n\\n# 施工算法映射表\\nSHIGONG_ALGORITHMS = {\\n \\\"nsga3\\\": main_shigong_yichuan,\\n \\\"benders\\\": main_shigong_yichuan,\\n \\\"lagrange\\\": main_shigong_yichuan,\\n \\\"lsc\\\": main_shigong_yichuan,\\n \\\"zsl\\\": main_shigong_yichuan,\\n \\\"fzdj\\\": main_shigong_yichuan\\n}\\n\\n# 全局路径规划器实例缓存\\nplanner_cache = {}\\n\\n--\\n rec_data = request.get_json()\\n\\n # 获取算法信息\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n ALG_MAP = {\\n \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n \\\"lzq\\\": \\\"粒子群\\\",\\n }\\n\\n functionWeight = rec_data[\\\"functionWeight\\\"]\\n if algorithm not in ALG_MAP.keys():\\n rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"] = \\\"nsga3\\\"\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n\\n alg = f\\\"===设施布局===\\\\n算法切换为{ALG_MAP[algorithm]}算法\\\\n\\\"\\n alg += f\\\"设施布局参数设置为:\\\\n\\\"\\n\\n # 安全的日志记录 - 只记录实际存在的元素\\n weight_names = [\\\"分散度\\\", \\\"可达性\\\", \\\"关联度\\\", \\\"屏蔽度\\\", \\\"适宜性\\\"]\\n weights_display = []\\n\\n for i, name in enumerate(weight_names):\\n--\\n@synchronized_request(shigong_lock)\\ndef shigong_router():\\n try:\\n # 获取请求数据和算法类型\\n rec_data = request.get_json()\\n algorithm = rec_data.get(\\\"constructionAlgo\\\", \\\"nsga3\\\") # 默认nsga3算法\\n ALG_MAP = {\\n \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n \\\"benders\\\": \\\"bender分解\\\",\\n \\\"lagrange\\\": \\\"拉格朗日松弛\\\",\\n \\\"lsc\\\": \\\"列生成\\\",\\n \\\"zsl\\\": \\\"整数L型\\\",\\n \\\"fzdj\\\": \\\"分支定界\\\"\\n }\\n\\n alg = f\\\"===施工算法===\\\\n\\\"\\n alg += f\\\"施工参数设置为:\\\\n\\\"\\n alg += f\\\"\\\"\\\" 施工方式:{rec_data[\\\"flowType\\\"]}流水施工,施工算法类类型:{ALG_MAP[algorithm]}\\\"\\\"\\\"\\n\", \"stdout\": \"\\nlogging.basicConfig(level=logging.DEBUG)\\n\\n# 施工算法映射表\\nSHIGONG_ALGORITHMS = {\\n \\\"nsga3\\\": main_shigong_yichuan,\\n \\\"benders\\\": main_shigong_yichuan,\\n \\\"lagrange\\\": main_shigong_yichuan,\\n \\\"lsc\\\": main_shigong_yichuan,\\n \\\"zsl\\\": main_shigong_yichuan,\\n \\\"fzdj\\\": main_shigong_yichuan\\n}\\n\\n# 全局路径规划器实例缓存\\nplanner_cache = {}\\n\\n--\\n rec_data = request.get_json()\\n\\n # 获取算法信息\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n ALG_MAP = {\\n \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n \\\"lzq\\\": \\\"粒子群\\\",\\n }\\n\\n functionWeight = rec_data[\\\"functionWeight\\\"]\\n if algorithm not in ALG_MAP.keys():\\n rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"] = \\\"nsga3\\\"\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n\\n alg = f\\\"===设施布局===\\\\n算法切换为{ALG_MAP[algorithm]}算法\\\\n\\\"\\n alg += f\\\"设施布局参数设置为:\\\\n\\\"\\n\\n # 安全的日志记录 - 只记录实际存在的元素\\n weight_names = [\\\"分散度\\\", \\\"可达性\\\", \\\"关联度\\\", \\\"屏蔽度\\\", \\\"适宜性\\\"]\\n weights_display = []\\n\\n for i, name in enumerate(weight_names):\\n--\\n@synchronized_request(shigong_lock)\\ndef shigong_router():\\n try:\\n # 获取请求数据和算法类型\\n rec_data = request.get_json()\\n algorithm = rec_data.get(\\\"constructionAlgo\\\", \\\"nsga3\\\") # 默认nsga3算法\\n ALG_MAP = {\\n \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n \\\"benders\\\": \\\"bender分解\\\",\\n \\\"lagrange\\\": \\\"拉格朗日松弛\\\",\\n \\\"lsc\\\": \\\"列生成\\\",\\n \\\"zsl\\\": \\\"整数L型\\\",\\n \\\"fzdj\\\": \\\"分支定界\\\"\\n }\\n\\n alg = f\\\"===施工算法===\\\\n\\\"\\n alg += f\\\"施工参数设置为:\\\\n\\\"\\n alg += f\\\"\\\"\\\" 施工方式:{rec_data[\\\"flowType\\\"]}流水施工,施工算法类类型:{ALG_MAP[algorithm]}\\\"\\\"\\\"\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 10 -B 5 \\\"nsga3\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}",
"timestamp": "2025-09-25T09:56:54.497725",
"tool_call_id": "run_command:5",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:56:56.827840",
"tool_calls": [
{
"id": "run_command:6",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -n \\\"main_shigong_yichuan\\\\|main_yingdi_yichuan\\\\|main_sheshi_yichuan\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"7:from construction import main_shigong_yichuan_v5 as main_shigong_yichuan\\n45: \\\"nsga3\\\": main_shigong_yichuan,\\n46: \\\"benders\\\": main_shigong_yichuan,\\n47: \\\"lagrange\\\": main_shigong_yichuan,\\n48: \\\"lsc\\\": main_shigong_yichuan,\\n49: \\\"zsl\\\": main_shigong_yichuan,\\n50: \\\"fzdj\\\": main_shigong_yichuan\\n\", \"stdout\": \"7:from construction import main_shigong_yichuan_v5 as main_shigong_yichuan\\n45: \\\"nsga3\\\": main_shigong_yichuan,\\n46: \\\"benders\\\": main_shigong_yichuan,\\n47: \\\"lagrange\\\": main_shigong_yichuan,\\n48: \\\"lsc\\\": main_shigong_yichuan,\\n49: \\\"zsl\\\": main_shigong_yichuan,\\n50: \\\"fzdj\\\": main_shigong_yichuan\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -n \\\"main_shigong_yichuan\\\\|main_yingdi_yichuan\\\\|main_sheshi_yichuan\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}",
"timestamp": "2025-09-25T09:56:58.634315",
"tool_call_id": "run_command:6",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:00.644176",
"tool_calls": [
{
"id": "run_command:7",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 20 -B 5 \\\"def yingdibuju\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \" return decorator\\n\\n\\n@app.route(\\\"/api/suanfa/yingdi\\\", methods=[\\\"POST\\\"])\\n@synchronized_request(yingdi_lock)\\ndef yingdibuju():\\n try:\\n rec_data = request.get_json()\\n print(rec_data)\\n \\n # === 添加这几行来保存入参 ===\\n import datetime\\n timestamp = datetime.datetime.now().strftime(\\\"%Y%m%d_%H%M%S\\\")\\n input_filename = f\\\"yingdi_input_{timestamp}.json\\\"\\n \\n with open(input_filename, 'w', encoding='utf-8') as f:\\n json.dump(rec_data, f, ensure_ascii=False, indent=2)\\n \\n print(f\\\"入参已保存到: {input_filename}\\\")\\n # === 添加结束 ===\\n \\n algorithm = rec_data[\\\"layoutAlgorithm\\\"]\\n strategy = rec_data[\\\"layoutStrategy\\\"]\\n ALG_MAP = {\\n \\\"yc\\\": \\\"遗传\\\",\\n \\\"bcd\\\": \\\"变尺度\\\",\\n\", \"stdout\": \" return decorator\\n\\n\\n@app.route(\\\"/api/suanfa/yingdi\\\", methods=[\\\"POST\\\"])\\n@synchronized_request(yingdi_lock)\\ndef yingdibuju():\\n try:\\n rec_data = request.get_json()\\n print(rec_data)\\n \\n # === 添加这几行来保存入参 ===\\n import datetime\\n timestamp = datetime.datetime.now().strftime(\\\"%Y%m%d_%H%M%S\\\")\\n input_filename = f\\\"yingdi_input_{timestamp}.json\\\"\\n \\n with open(input_filename, 'w', encoding='utf-8') as f:\\n json.dump(rec_data, f, ensure_ascii=False, indent=2)\\n \\n print(f\\\"入参已保存到: {input_filename}\\\")\\n # === 添加结束 ===\\n \\n algorithm = rec_data[\\\"layoutAlgorithm\\\"]\\n strategy = rec_data[\\\"layoutStrategy\\\"]\\n ALG_MAP = {\\n \\\"yc\\\": \\\"遗传\\\",\\n \\\"bcd\\\": \\\"变尺度\\\",\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 20 -B 5 \\\"def yingdibuju\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}",
"timestamp": "2025-09-25T09:57:02.452848",
"tool_call_id": "run_command:7",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:04.376807",
"tool_calls": [
{
"id": "run_command:8",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 30 \\\"rec_data = request.get_json\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py | head -40\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \" rec_data = request.get_json()\\n print(rec_data)\\n \\n # === 添加这几行来保存入参 ===\\n import datetime\\n timestamp = datetime.datetime.now().strftime(\\\"%Y%m%d_%H%M%S\\\")\\n input_filename = f\\\"yingdi_input_{timestamp}.json\\\"\\n \\n with open(input_filename, 'w', encoding='utf-8') as f:\\n json.dump(rec_data, f, ensure_ascii=False, indent=2)\\n \\n print(f\\\"入参已保存到: {input_filename}\\\")\\n # === 添加结束 ===\\n \\n algorithm = rec_data[\\\"layoutAlgorithm\\\"]\\n strategy = rec_data[\\\"layoutStrategy\\\"]\\n ALG_MAP = {\\n \\\"yc\\\": \\\"遗传\\\",\\n \\\"bcd\\\": \\\"变尺度\\\",\\n \\\"jy\\\": \\\"鲸鱼\\\",\\n \\\"lq\\\": \\\"狼群\\\",\\n \\\"nd\\\": \\\"拟牛顿\\\",\\n \\\"yhc\\\": \\\"萤火虫\\\",\\n \\\"tdf\\\": \\\"梯度\\\",\\n \\\"mnth\\\": \\\"模拟退火\\\",\\n }\\n\\n strategy_MAP = {\\n \\\"jzbj\\\": \\\"集中布局\\\",\\n \\\"fsbj\\\": \\\"分散布局\\\"\\n }\\n--\\n rec_data = request.get_json()\\n\\n # 获取算法信息\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n ALG_MAP = {\\n \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n \\\"lzq\\\": \\\"粒子群\\\",\\n }\\n\", \"stdout\": \" rec_data = request.get_json()\\n print(rec_data)\\n \\n # === 添加这几行来保存入参 ===\\n import datetime\\n timestamp = datetime.datetime.now().strftime(\\\"%Y%m%d_%H%M%S\\\")\\n input_filename = f\\\"yingdi_input_{timestamp}.json\\\"\\n \\n with open(input_filename, 'w', encoding='utf-8') as f:\\n json.dump(rec_data, f, ensure_ascii=False, indent=2)\\n \\n print(f\\\"入参已保存到: {input_filename}\\\")\\n # === 添加结束 ===\\n \\n algorithm = rec_data[\\\"layoutAlgorithm\\\"]\\n strategy = rec_data[\\\"layoutStrategy\\\"]\\n ALG_MAP = {\\n \\\"yc\\\": \\\"遗传\\\",\\n \\\"bcd\\\": \\\"变尺度\\\",\\n \\\"jy\\\": \\\"鲸鱼\\\",\\n \\\"lq\\\": \\\"狼群\\\",\\n \\\"nd\\\": \\\"拟牛顿\\\",\\n \\\"yhc\\\": \\\"萤火虫\\\",\\n \\\"tdf\\\": \\\"梯度\\\",\\n \\\"mnth\\\": \\\"模拟退火\\\",\\n }\\n\\n strategy_MAP = {\\n \\\"jzbj\\\": \\\"集中布局\\\",\\n \\\"fsbj\\\": \\\"分散布局\\\"\\n }\\n--\\n rec_data = request.get_json()\\n\\n # 获取算法信息\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n ALG_MAP = {\\n \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n \\\"lzq\\\": \\\"粒子群\\\",\\n }\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 30 \\\"rec_data = request.get_json\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py | head -40\"}",
"timestamp": "2025-09-25T09:57:06.183926",
"tool_call_id": "run_command:8",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:08.014864",
"tool_calls": [
{
"id": "run_command:9",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 50 \\\"def sheshibuju\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py | head -60\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"def sheshibuju():\\n try:\\n rec_data = request.get_json()\\n\\n # 获取算法信息\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n ALG_MAP = {\\n \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n \\\"lzq\\\": \\\"粒子群\\\",\\n }\\n\\n functionWeight = rec_data[\\\"functionWeight\\\"]\\n if algorithm not in ALG_MAP.keys():\\n rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"] = \\\"nsga3\\\"\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n\\n alg = f\\\"===设施布局===\\\\n算法切换为{ALG_MAP[algorithm]}算法\\\\n\\\"\\n alg += f\\\"设施布局参数设置为:\\\\n\\\"\\n\\n # 安全的日志记录 - 只记录实际存在的元素\\n weight_names = [\\\"分散度\\\", \\\"可达性\\\", \\\"关联度\\\", \\\"屏蔽度\\\", \\\"适宜性\\\"]\\n weights_display = []\\n\\n for i, name in enumerate(weight_names):\\n if i < len(functionWeight):\\n weights_display.append(f\\\"{name}:{functionWeight[i]}\\\")\\n\\n alg += \\\" 目标函数:\\\\n \\\" + \\\"\\\".join(weights_display) + \\\"\\\\n\\\"\\n\\n # 记录约束条件(如果有)\\n constraintParam = rec_data.get(\\\"constraints\\\", {})\\n facilitySafeDistance = constraintParam.get(\\\"facilitySafeDistance\\\", \\\"未提供\\\")\\n alg += f\\\" 约束条件:\\\\n 设施安全距离:{facilitySafeDistance}\\\"\\n\\n logging.debug(alg)\\n\\n # 调用算法(这里假设算法内部能处理不同长度的权重)\\n final_data = facility_layout_main(rec_data)\\n\\n response = {\\n \\\"facilityLayout\\\": final_data.get(\\\"facilityLayout\\\"),\\n \\\"code\\\": final_data.get(\\\"code\\\", 500),\\n \\\"message\\\": final_data.get(\\\"message\\\", \\\"未知错误\\\")\\n }\\n\\n return jsonify(response)\\n\\n except Exception as e:\\n return jsonify({\\n \\\"facilityLayout\\\": None,\\n \\\"code\\\": 500,\\n\", \"stdout\": \"def sheshibuju():\\n try:\\n rec_data = request.get_json()\\n\\n # 获取算法信息\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n ALG_MAP = {\\n \\\"nsga3\\\": \\\"非支配排序遗传算法第三代\\\",\\n \\\"lzq\\\": \\\"粒子群\\\",\\n }\\n\\n functionWeight = rec_data[\\\"functionWeight\\\"]\\n if algorithm not in ALG_MAP.keys():\\n rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"] = \\\"nsga3\\\"\\n algorithm = rec_data[\\\"facilityData\\\"][\\\"facilityAlgorithm\\\"]\\n\\n alg = f\\\"===设施布局===\\\\n算法切换为{ALG_MAP[algorithm]}算法\\\\n\\\"\\n alg += f\\\"设施布局参数设置为:\\\\n\\\"\\n\\n # 安全的日志记录 - 只记录实际存在的元素\\n weight_names = [\\\"分散度\\\", \\\"可达性\\\", \\\"关联度\\\", \\\"屏蔽度\\\", \\\"适宜性\\\"]\\n weights_display = []\\n\\n for i, name in enumerate(weight_names):\\n if i < len(functionWeight):\\n weights_display.append(f\\\"{name}:{functionWeight[i]}\\\")\\n\\n alg += \\\" 目标函数:\\\\n \\\" + \\\"\\\".join(weights_display) + \\\"\\\\n\\\"\\n\\n # 记录约束条件(如果有)\\n constraintParam = rec_data.get(\\\"constraints\\\", {})\\n facilitySafeDistance = constraintParam.get(\\\"facilitySafeDistance\\\", \\\"未提供\\\")\\n alg += f\\\" 约束条件:\\\\n 设施安全距离:{facilitySafeDistance}\\\"\\n\\n logging.debug(alg)\\n\\n # 调用算法(这里假设算法内部能处理不同长度的权重)\\n final_data = facility_layout_main(rec_data)\\n\\n response = {\\n \\\"facilityLayout\\\": final_data.get(\\\"facilityLayout\\\"),\\n \\\"code\\\": final_data.get(\\\"code\\\", 500),\\n \\\"message\\\": final_data.get(\\\"message\\\", \\\"未知错误\\\")\\n }\\n\\n return jsonify(response)\\n\\n except Exception as e:\\n return jsonify({\\n \\\"facilityLayout\\\": None,\\n \\\"code\\\": 500,\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 50 \\\"def sheshibuju\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py | head -60\"}",
"timestamp": "2025-09-25T09:57:09.820012",
"tool_call_id": "run_command:9",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:11.903303",
"tool_calls": [
{
"id": "run_command:10",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -n \\\"facility_layout_main\\\\|main_yingdi_yichuan\\\\|main_sheshi\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"6:from Facility_main_faster import facility_layout_main\\n794: final_data = facility_layout_main(rec_data)\\n\", \"stdout\": \"6:from Facility_main_faster import facility_layout_main\\n794: final_data = facility_layout_main(rec_data)\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -n \\\"facility_layout_main\\\\|main_yingdi_yichuan\\\\|main_sheshi\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}",
"timestamp": "2025-09-25T09:57:13.710683",
"tool_call_id": "run_command:10",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:15.799679",
"tool_calls": [
{
"id": "run_command:11",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 20 -B 5 \\\"class.*:\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py | head -30\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"\\n except Exception as e:\\n raise\\n\\n\\nclass CampProblem(ElementwiseProblem):\\n \\\"\\\"\\\"优化问题定义 - 支持多目标权重、热力负值约束和场景方向\\\"\\\"\\\"\\n\\n def __init__(self, config: Dict):\\n self.config = config\\n\\n # 计算理论极值\\n self.min_area = config['minSize'] ** 2\\n self.max_area = config['maxSize'] ** 2\\n\\n # 添加最大可能距离(场地对角线)\\n self.max_possible_dist = np.sqrt(config['FIELD_WIDTH'] ** 2 + config['FIELD_HEIGHT'] ** 2)\\n\\n # 添加热力矩阵相关属性\\n self.heatmap_grid = np.array(config['heatmap_grid'])\\n self.max_heat = np.max(self.heatmap_grid)\\n self.max_heat_sum = self.max_heat * (config['maxSize'] ** 2) * config['numCamp']\\n\\n # 更新目标权重\\n self.weights = config['functionWeight']\\n\\n--\\n\\n return score\\n\\n\", \"stdout\": \"\\n except Exception as e:\\n raise\\n\\n\\nclass CampProblem(ElementwiseProblem):\\n \\\"\\\"\\\"优化问题定义 - 支持多目标权重、热力负值约束和场景方向\\\"\\\"\\\"\\n\\n def __init__(self, config: Dict):\\n self.config = config\\n\\n # 计算理论极值\\n self.min_area = config['minSize'] ** 2\\n self.max_area = config['maxSize'] ** 2\\n\\n # 添加最大可能距离(场地对角线)\\n self.max_possible_dist = np.sqrt(config['FIELD_WIDTH'] ** 2 + config['FIELD_HEIGHT'] ** 2)\\n\\n # 添加热力矩阵相关属性\\n self.heatmap_grid = np.array(config['heatmap_grid'])\\n self.max_heat = np.max(self.heatmap_grid)\\n self.max_heat_sum = self.max_heat * (config['maxSize'] ** 2) * config['numCamp']\\n\\n # 更新目标权重\\n self.weights = config['functionWeight']\\n\\n--\\n\\n return score\\n\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 20 -B 5 \\\"class.*:\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py | head -30\"}",
"timestamp": "2025-09-25T09:57:17.606702",
"tool_call_id": "run_command:11",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:19.762565",
"tool_calls": [
{
"id": "run_command:12",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -n \\\"def main.*yichuan\\\\|def.*optimize\\\\|def.*algorithm\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"1595:def layout_other_areas(config: Dict, camp_positions: List[Dict], algorithm_params: Dict) -> List[Dict]:\\n1683:def main_gaocheng_yichuan_camp(\\n2094:def layout_priority_areas_first(config: Dict, algorithm_params: Dict) -> List[Dict]:\\n2692:def main_gaocheng_yichuan_camp_staged(\\n\", \"stdout\": \"1595:def layout_other_areas(config: Dict, camp_positions: List[Dict], algorithm_params: Dict) -> List[Dict]:\\n1683:def main_gaocheng_yichuan_camp(\\n2094:def layout_priority_areas_first(config: Dict, algorithm_params: Dict) -> List[Dict]:\\n2692:def main_gaocheng_yichuan_camp_staged(\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -n \\\"def main.*yichuan\\\\|def.*optimize\\\\|def.*algorithm\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}",
"timestamp": "2025-09-25T09:57:21.570418",
"tool_call_id": "run_command:12",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:25.362502",
"tool_calls": [
{
"id": "run_command:13",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 30 \\\"def main_gaocheng_yichuan_camp(\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"def main_gaocheng_yichuan_camp(\\n input_data: Dict,\\n grid_path: str,\\n config_path: str = \\\"campConfig.json\\\",\\n index=0\\n) -> Dict:\\n # 遗传算法优化开始\\n start_time = time.time()\\n\\n try:\\n # 加载配置文件\\n with open(config_path, 'r') as paramsFile:\\n paramsData = json.load(paramsFile)\\n\\n # 获取算法名称\\n algorithm_name = input_data[\\\"layoutAlgorithm\\\"]\\n\\n # 获取算法参数\\n algorithm_params = paramsData.get(algorithm_name, {})\\n if 'algorithmParams' in input_data:\\n algorithm_params.update(input_data['algorithmParams'])\\n\\n # 设置默认值\\n default_params = {\\n 'popSize': 100,\\n 'maxGenerations': 30,\\n 'crossoverProb': 0.9,\\n 'crossoverEta': 15,\\n 'mutationProb': 0.1,\\n 'mutationEta': 20\\n }\\n\", \"stdout\": \"def main_gaocheng_yichuan_camp(\\n input_data: Dict,\\n grid_path: str,\\n config_path: str = \\\"campConfig.json\\\",\\n index=0\\n) -> Dict:\\n # 遗传算法优化开始\\n start_time = time.time()\\n\\n try:\\n # 加载配置文件\\n with open(config_path, 'r') as paramsFile:\\n paramsData = json.load(paramsFile)\\n\\n # 获取算法名称\\n algorithm_name = input_data[\\\"layoutAlgorithm\\\"]\\n\\n # 获取算法参数\\n algorithm_params = paramsData.get(algorithm_name, {})\\n if 'algorithmParams' in input_data:\\n algorithm_params.update(input_data['algorithmParams'])\\n\\n # 设置默认值\\n default_params = {\\n 'popSize': 100,\\n 'maxGenerations': 30,\\n 'crossoverProb': 0.9,\\n 'crossoverEta': 15,\\n 'mutationProb': 0.1,\\n 'mutationEta': 20\\n }\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 30 \\\"def main_gaocheng_yichuan_camp(\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}",
"timestamp": "2025-09-25T09:57:27.168841",
"tool_call_id": "run_command:13",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:29.154663",
"tool_calls": [
{
"id": "run_command:14",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 50 \\\"algorithm = NSGA3\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"output\": \"\", \"stdout\": \"\", \"stderr\": \"\", \"return_code\": 1, \"command\": \"grep -A 50 \\\"algorithm = NSGA3\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}",
"timestamp": "2025-09-25T09:57:30.961451",
"tool_call_id": "run_command:14",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:33.331214",
"tool_calls": [
{
"id": "run_command:15",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 20 \\\"NSGA3\\\\|GeneticAlgorithm\\\\|pymoo\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"from pymoo.algorithms.soo.nonconvex.ga import GA\\nfrom pymoo.core.problem import ElementwiseProblem\\nfrom pymoo.optimize import minimize\\nfrom pymoo.operators.crossover.sbx import SBX\\nfrom pymoo.operators.mutation.pm import PM\\nfrom pymoo.operators.sampling.rnd import FloatRandomSampling\\nfrom pymoo.termination import get_termination\\nfrom typing import Dict, Tuple, List\\nfrom pymoo.config import Config\\nfrom pymoo.core.survival import Survival\\nfrom pymoo.util.nds.non_dominated_sorting import NonDominatedSorting\\nfrom pymoo.core.individual import Individual\\nfrom scipy.ndimage import gaussian_filter\\nimport json\\nimport re\\nfrom collections import defaultdict\\n# import traceback\\nfrom geology.heatmap import get_heatmap\\n\\nConfig.show_compile_hint = False\\n\\n\\ndef calculate_slope_aspect(elevation, dx, dy, sigma=9):\\n \\\"\\\"\\\"改进的坡向计算(考虑实际地理距离)\\\"\\\"\\\"\\n # 根据实际网格尺寸调整sigma值\\n sigma_x = sigma / dx\\n sigma_y = sigma / dy\\n elevation_smoothed = gaussian_filter(elevation, sigma=(sigma_y, sigma_x))\\n\\n # 计算高程梯度\\n dz_dx, dz_dy = np.gradient(elevation_smoothed, dx, abs(dy))\\n\\n\", \"stdout\": \"from pymoo.algorithms.soo.nonconvex.ga import GA\\nfrom pymoo.core.problem import ElementwiseProblem\\nfrom pymoo.optimize import minimize\\nfrom pymoo.operators.crossover.sbx import SBX\\nfrom pymoo.operators.mutation.pm import PM\\nfrom pymoo.operators.sampling.rnd import FloatRandomSampling\\nfrom pymoo.termination import get_termination\\nfrom typing import Dict, Tuple, List\\nfrom pymoo.config import Config\\nfrom pymoo.core.survival import Survival\\nfrom pymoo.util.nds.non_dominated_sorting import NonDominatedSorting\\nfrom pymoo.core.individual import Individual\\nfrom scipy.ndimage import gaussian_filter\\nimport json\\nimport re\\nfrom collections import defaultdict\\n# import traceback\\nfrom geology.heatmap import get_heatmap\\n\\nConfig.show_compile_hint = False\\n\\n\\ndef calculate_slope_aspect(elevation, dx, dy, sigma=9):\\n \\\"\\\"\\\"改进的坡向计算(考虑实际地理距离)\\\"\\\"\\\"\\n # 根据实际网格尺寸调整sigma值\\n sigma_x = sigma / dx\\n sigma_y = sigma / dy\\n elevation_smoothed = gaussian_filter(elevation, sigma=(sigma_y, sigma_x))\\n\\n # 计算高程梯度\\n dz_dx, dz_dy = np.gradient(elevation_smoothed, dx, abs(dy))\\n\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 20 \\\"NSGA3\\\\|GeneticAlgorithm\\\\|pymoo\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}",
"timestamp": "2025-09-25T09:57:35.138548",
"tool_call_id": "run_command:15",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:37.475240",
"tool_calls": [
{
"id": "run_command:16",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 30 \\\"algorithm = GA\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \" algorithm = GA(\\n pop_size=300,\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=0.7,\\n eta=30\\n ),\\n mutation=PM(\\n prob=0.7,\\n eta=30\\n ),\\n eliminate_duplicates=True\\n )\\n\\n # 运行优化\\n termination = get_termination(\\\"n_gen\\\", algorithm_params.get('maxGenerations', 200))\\n res = minimize(\\n problem,\\n algorithm,\\n termination=termination,\\n verbose=True\\n )\\n\\n # 构建结果\\n other_areas_result = []\\n\\n if res.X is not None:\\n # 检查约束满足情况\\n constraint_violations = res.G\\n # 现在有4个约束边界、重叠、负热力、距离\\n if all(v <= 1e-6 for v in constraint_violations):\\n--\\n algorithm = GA(\\n pop_size=params['popSize'],\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=params['crossoverProb'],\\n eta=params['crossoverEta']\\n ),\\n mutation=PM(\\n prob=params['mutationProb'],\\n eta=params['mutationEta']\\n ),\\n eliminate_duplicates=True,\\n save_history=False,\\n )\\n\\n # 运行优化\\n termination = get_termination(\\\"n_gen\\\", params['maxGenerations'])\\n res = minimize(\\n problem,\\n algorithm,\\n termination=termination,\\n verbose=True\\n )\\n\\n # 计算运行时间\\n end_time = time.time()\\n runtime = end_time - start_time\\n # 算法运行时间计算完成\\n\\n # 检查结果\\n if res.X is not None:\\n--\\n extended_algorithm = GA(\\n pop_size=extended_params['popSize'],\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=extended_params['crossoverProb'],\\n eta=extended_params['crossoverEta']\\n ),\\n mutation=PM(\\n prob=extended_params['mutationProb'],\\n eta=extended_params['mutationEta']\\n ),\\n eliminate_duplicates=True,\\n save_history=False\\n )\\n\\n # 重新运行优化\\n extended_termination = get_termination(\\\"n_gen\\\", extended_params['maxGenerations'])\\n extended_res = minimize(\\n problem,\\n extended_algorithm,\\n extended_termination,\\n verbose=True\\n )\\n\\n # 检查扩展运行的结果\\n if extended_res.X is not None:\\n extended_violations = [\\n problem._boundary_violation_vectorized(extended_res.X),\\n problem._overlap_violation_vectorized(extended_res.X),\\n problem._distance_violation_vectorized(extended_res.X),\\n problem._heat_negative_violation_vectorized(extended_res.X)\\n--\\n algorithm = GA(\\n pop_size=algorithm_params.get('popSize', 100),\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=algorithm_params.get('crossoverProb', 0.9),\\n eta=algorithm_params.get('crossoverEta', 15)\\n ),\\n mutation=PM(\\n prob=algorithm_params.get('mutationProb', 0.1),\\n eta=algorithm_params.get('mutationEta', 20)\\n ),\\n eliminate_duplicates=True,\\n save_history=False,\\n )\\n \\n # 运行优化\\n termination = get_termination(\\\"n_gen\\\", algorithm_params.get('maxGenerations', 50))\\n res = minimize(\\n problem,\\n algorithm,\\n termination=termination,\\n verbose=True\\n )\\n \\n # 处理结果\\n all_areas_result = []\\n \\n if res.X is not None:\\n # 检查约束满足情况\\n constraint_violations = res.G\\n tolerance = 1e-6\\n--\\n algorithm = GA(\\n pop_size=params['popSize'],\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=params['crossoverProb'],\\n eta=params['crossoverEta']\\n ),\\n mutation=PM(\\n prob=params['mutationProb'],\\n eta=params['mutationEta']\\n ),\\n eliminate_duplicates=True,\\n save_history=False,\\n )\\n\\n # 运行优化\\n termination = get_termination(\\\"n_gen\\\", params['maxGenerations'])\\n res = minimize(\\n problem,\\n algorithm,\\n termination=termination,\\n verbose=True\\n )\\n\\n # 检查营地布局结果\\n if res.X is not None:\\n constraint_violations = [\\n problem._boundary_violation_vectorized(res.X),\\n problem._overlap_violation_vectorized(res.X),\\n problem._distance_violation_vectorized(res.X),\\n problem._heat_negative_violation_vectorized(res.X)\\n\", \"stdout\": \" algorithm = GA(\\n pop_size=300,\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=0.7,\\n eta=30\\n ),\\n mutation=PM(\\n prob=0.7,\\n eta=30\\n ),\\n eliminate_duplicates=True\\n )\\n\\n # 运行优化\\n termination = get_termination(\\\"n_gen\\\", algorithm_params.get('maxGenerations', 200))\\n res = minimize(\\n problem,\\n algorithm,\\n termination=termination,\\n verbose=True\\n )\\n\\n # 构建结果\\n other_areas_result = []\\n\\n if res.X is not None:\\n # 检查约束满足情况\\n constraint_violations = res.G\\n # 现在有4个约束边界、重叠、负热力、距离\\n if all(v <= 1e-6 for v in constraint_violations):\\n--\\n algorithm = GA(\\n pop_size=params['popSize'],\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=params['crossoverProb'],\\n eta=params['crossoverEta']\\n ),\\n mutation=PM(\\n prob=params['mutationProb'],\\n eta=params['mutationEta']\\n ),\\n eliminate_duplicates=True,\\n save_history=False,\\n )\\n\\n # 运行优化\\n termination = get_termination(\\\"n_gen\\\", params['maxGenerations'])\\n res = minimize(\\n problem,\\n algorithm,\\n termination=termination,\\n verbose=True\\n )\\n\\n # 计算运行时间\\n end_time = time.time()\\n runtime = end_time - start_time\\n # 算法运行时间计算完成\\n\\n # 检查结果\\n if res.X is not None:\\n--\\n extended_algorithm = GA(\\n pop_size=extended_params['popSize'],\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=extended_params['crossoverProb'],\\n eta=extended_params['crossoverEta']\\n ),\\n mutation=PM(\\n prob=extended_params['mutationProb'],\\n eta=extended_params['mutationEta']\\n ),\\n eliminate_duplicates=True,\\n save_history=False\\n )\\n\\n # 重新运行优化\\n extended_termination = get_termination(\\\"n_gen\\\", extended_params['maxGenerations'])\\n extended_res = minimize(\\n problem,\\n extended_algorithm,\\n extended_termination,\\n verbose=True\\n )\\n\\n # 检查扩展运行的结果\\n if extended_res.X is not None:\\n extended_violations = [\\n problem._boundary_violation_vectorized(extended_res.X),\\n problem._overlap_violation_vectorized(extended_res.X),\\n problem._distance_violation_vectorized(extended_res.X),\\n problem._heat_negative_violation_vectorized(extended_res.X)\\n--\\n algorithm = GA(\\n pop_size=algorithm_params.get('popSize', 100),\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=algorithm_params.get('crossoverProb', 0.9),\\n eta=algorithm_params.get('crossoverEta', 15)\\n ),\\n mutation=PM(\\n prob=algorithm_params.get('mutationProb', 0.1),\\n eta=algorithm_params.get('mutationEta', 20)\\n ),\\n eliminate_duplicates=True,\\n save_history=False,\\n )\\n \\n # 运行优化\\n termination = get_termination(\\\"n_gen\\\", algorithm_params.get('maxGenerations', 50))\\n res = minimize(\\n problem,\\n algorithm,\\n termination=termination,\\n verbose=True\\n )\\n \\n # 处理结果\\n all_areas_result = []\\n \\n if res.X is not None:\\n # 检查约束满足情况\\n constraint_violations = res.G\\n tolerance = 1e-6\\n--\\n algorithm = GA(\\n pop_size=params['popSize'],\\n sampling=FloatRandomSampling(),\\n crossover=SBX(\\n prob=params['crossoverProb'],\\n eta=params['crossoverEta']\\n ),\\n mutation=PM(\\n prob=params['mutationProb'],\\n eta=params['mutationEta']\\n ),\\n eliminate_duplicates=True,\\n save_history=False,\\n )\\n\\n # 运行优化\\n termination = get_termination(\\\"n_gen\\\", params['maxGenerations'])\\n res = minimize(\\n problem,\\n algorithm,\\n termination=termination,\\n verbose=True\\n )\\n\\n # 检查营地布局结果\\n if res.X is not None:\\n constraint_violations = [\\n problem._boundary_violation_vectorized(res.X),\\n problem._overlap_violation_vectorized(res.X),\\n problem._distance_violation_vectorized(res.X),\\n problem._heat_negative_violation_vectorized(res.X)\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 30 \\\"algorithm = GA\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}",
"timestamp": "2025-09-25T09:57:39.284003",
"tool_call_id": "run_command:16",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:41.947479",
"tool_calls": [
{
"id": "run_command:17",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 10 -B 5 \\\"input_data.*Dict\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \" aspect[np.isclose(slope, 0)] = -1 # 用-1表示平坦区域\\n\\n return slope, aspect\\n\\n\\ndef load_config_from_json(input_data: Dict, grid_data_path: str) -> Dict:\\n try:\\n with open(grid_data_path, 'r', encoding='utf-8') as f:\\n grid_data_dict = json.load(f)\\n\\n # 获取营地编号列表\\n camp_ids = input_data.get(\\\"campIds\\\", [])\\n if not camp_ids:\\n raise ValueError(\\\"必须提供'campIds'参数,包含营地的唯一编号列表\\\")\\n num_camp = len(camp_ids)\\n\\n--\\n\\n# 在Camp_layout_gaocheng_fsbj_yichuan.py中添加其他区域布局类\\nclass OtherAreasProblem(ElementwiseProblem):\\n \\\"\\\"\\\"其他区域布局优化问题\\\"\\\"\\\"\\n\\n def __init__(self, config: Dict, camp_positions: List[Dict], original_input_data: List[Dict] = None):\\n self.config = config\\n self.camp_positions = camp_positions # 已布局的营地位置\\n self.original_input_data = original_input_data or []\\n self.heatmap_grid = np.array(config['heatmap_grid'])\\n\\n # 网格参数\\n self.agg_rows, self.agg_cols = self.heatmap_grid.shape\\n # 检查网格尺寸是否有效\\n if self.agg_cols <= 0 or self.agg_rows <= 0:\\n self.dx = 1.0\\n--\\n\\n# 优化历史保存功能已移除\\n\\n\\ndef main_gaocheng_yichuan_camp(\\n input_data: Dict,\\n grid_path: str,\\n config_path: str = \\\"campConfig.json\\\",\\n index=0\\n) -> Dict:\\n # 遗传算法优化开始\\n start_time = time.time()\\n\\n try:\\n # 加载配置文件\\n with open(config_path, 'r') as paramsFile:\\n--\\n\\n # 布局策略和约束条件\\n \\n # 创建统一的优化问题\\n class UnifiedOtherAreasProblem(ElementwiseProblem):\\n def __init__(self, config: Dict, other_areas: Dict, original_input_data: List[Dict] = None):\\n self.config = config\\n self.other_areas = other_areas\\n self.other_areas_details = config.get('otherAreasDetails', {}) # 新增:获取详细区域信息\\n self.original_input_data = original_input_data or []\\n self.heatmap_grid = np.array(config['heatmap_grid'])\\n \\n # 网格参数\\n self.agg_rows, self.agg_cols = self.heatmap_grid.shape\\n # 检查网格尺寸是否有效\\n if self.agg_cols <= 0 or self.agg_rows <= 0:\\n--\\n # 其他区域布局完成\\n return all_areas_result\\n\\n\\ndef main_gaocheng_yichuan_camp_staged(\\n input_data: Dict,\\n grid_path: str,\\n config_path: str = \\\"campConfig.json\\\",\\n index=0\\n) -> Dict:\\n \\\"\\\"\\\"分阶段布局主函数:先布局所有其他区域(训练设施中心、车辆停放北边、弹药库东边),再布局营地(围绕集结操场)\\\"\\\"\\\"\\n # 分阶段遗传算法优化开始\\n start_time = time.time()\\n\\n try:\\n # 加载配置文件\\n\", \"stdout\": \" aspect[np.isclose(slope, 0)] = -1 # 用-1表示平坦区域\\n\\n return slope, aspect\\n\\n\\ndef load_config_from_json(input_data: Dict, grid_data_path: str) -> Dict:\\n try:\\n with open(grid_data_path, 'r', encoding='utf-8') as f:\\n grid_data_dict = json.load(f)\\n\\n # 获取营地编号列表\\n camp_ids = input_data.get(\\\"campIds\\\", [])\\n if not camp_ids:\\n raise ValueError(\\\"必须提供'campIds'参数,包含营地的唯一编号列表\\\")\\n num_camp = len(camp_ids)\\n\\n--\\n\\n# 在Camp_layout_gaocheng_fsbj_yichuan.py中添加其他区域布局类\\nclass OtherAreasProblem(ElementwiseProblem):\\n \\\"\\\"\\\"其他区域布局优化问题\\\"\\\"\\\"\\n\\n def __init__(self, config: Dict, camp_positions: List[Dict], original_input_data: List[Dict] = None):\\n self.config = config\\n self.camp_positions = camp_positions # 已布局的营地位置\\n self.original_input_data = original_input_data or []\\n self.heatmap_grid = np.array(config['heatmap_grid'])\\n\\n # 网格参数\\n self.agg_rows, self.agg_cols = self.heatmap_grid.shape\\n # 检查网格尺寸是否有效\\n if self.agg_cols <= 0 or self.agg_rows <= 0:\\n self.dx = 1.0\\n--\\n\\n# 优化历史保存功能已移除\\n\\n\\ndef main_gaocheng_yichuan_camp(\\n input_data: Dict,\\n grid_path: str,\\n config_path: str = \\\"campConfig.json\\\",\\n index=0\\n) -> Dict:\\n # 遗传算法优化开始\\n start_time = time.time()\\n\\n try:\\n # 加载配置文件\\n with open(config_path, 'r') as paramsFile:\\n--\\n\\n # 布局策略和约束条件\\n \\n # 创建统一的优化问题\\n class UnifiedOtherAreasProblem(ElementwiseProblem):\\n def __init__(self, config: Dict, other_areas: Dict, original_input_data: List[Dict] = None):\\n self.config = config\\n self.other_areas = other_areas\\n self.other_areas_details = config.get('otherAreasDetails', {}) # 新增:获取详细区域信息\\n self.original_input_data = original_input_data or []\\n self.heatmap_grid = np.array(config['heatmap_grid'])\\n \\n # 网格参数\\n self.agg_rows, self.agg_cols = self.heatmap_grid.shape\\n # 检查网格尺寸是否有效\\n if self.agg_cols <= 0 or self.agg_rows <= 0:\\n--\\n # 其他区域布局完成\\n return all_areas_result\\n\\n\\ndef main_gaocheng_yichuan_camp_staged(\\n input_data: Dict,\\n grid_path: str,\\n config_path: str = \\\"campConfig.json\\\",\\n index=0\\n) -> Dict:\\n \\\"\\\"\\\"分阶段布局主函数:先布局所有其他区域(训练设施中心、车辆停放北边、弹药库东边),再布局营地(围绕集结操场)\\\"\\\"\\\"\\n # 分阶段遗传算法优化开始\\n start_time = time.time()\\n\\n try:\\n # 加载配置文件\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 10 -B 5 \\\"input_data.*Dict\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}",
"timestamp": "2025-09-25T09:57:43.756057",
"tool_call_id": "run_command:17",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:46.466672",
"tool_calls": [
{
"id": "run_command:18",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 15 \\\"def load_config_from_json\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"def load_config_from_json(input_data: Dict, grid_data_path: str) -> Dict:\\n try:\\n with open(grid_data_path, 'r', encoding='utf-8') as f:\\n grid_data_dict = json.load(f)\\n\\n # 获取营地编号列表\\n camp_ids = input_data.get(\\\"campIds\\\", [])\\n if not camp_ids:\\n raise ValueError(\\\"必须提供'campIds'参数,包含营地的唯一编号列表\\\")\\n num_camp = len(camp_ids)\\n\\n # 获取场景参数\\n scene = input_data.get(\\\"scene\\\", None)\\n\\n grid_size = float(input_data.get(\\\"gridSize\\\", 1.0))\\n grid_data = defaultdict(lambda: defaultdict(float))\\n\", \"stdout\": \"def load_config_from_json(input_data: Dict, grid_data_path: str) -> Dict:\\n try:\\n with open(grid_data_path, 'r', encoding='utf-8') as f:\\n grid_data_dict = json.load(f)\\n\\n # 获取营地编号列表\\n camp_ids = input_data.get(\\\"campIds\\\", [])\\n if not camp_ids:\\n raise ValueError(\\\"必须提供'campIds'参数,包含营地的唯一编号列表\\\")\\n num_camp = len(camp_ids)\\n\\n # 获取场景参数\\n scene = input_data.get(\\\"scene\\\", None)\\n\\n grid_size = float(input_data.get(\\\"gridSize\\\", 1.0))\\n grid_data = defaultdict(lambda: defaultdict(float))\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 15 \\\"def load_config_from_json\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}",
"timestamp": "2025-09-25T09:57:48.275306",
"tool_call_id": "run_command:18",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:50.139140",
"tool_calls": [
{
"id": "run_command:19",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"grep -A 50 \\\"return {\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py | head -60\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \" return {\\n \\\"camps\\\": camps,\\n \\\"otherAreas\\\": other_areas_result, # 新增其他区域布局结果\\n \\\"code\\\": 200,\\n \\\"message\\\": \\\"Success\\\",\\n \\\"runtime\\\": runtime,\\n \\\"optimization_scores\\\": {\\n \\\"maximization_score\\\": float(maximization_score),\\n \\\"dispersion_score\\\": float(dispersion_score),\\n \\\"suitability_score\\\": float(suitability_score),\\n \\\"forward_score\\\": float(forward_score),\\n \\\"withdrawal_score\\\": float(withdrawal_score),\\n \\\"combined_score\\\": float(-res.F[0])\\n }\\n }\\n else:\\n # 尝试从历史中找到满足所有约束的最佳解\\n\\n best_feasible_solution = None\\n best_feasible_fitness = float('inf')\\n\\n if res.history is not None:\\n for gen in res.history:\\n pop = gen.pop\\n X_pop = pop.get(\\\"X\\\")\\n F_pop = pop.get(\\\"F\\\")\\n\\n if X_pop is not None and F_pop is not None:\\n for j, (x_individual, f_individual) in enumerate(zip(X_pop, F_pop)):\\n # 计算该个体的约束违反\\n ind_violations = [\\n problem._boundary_violation_vectorized(x_individual),\\n problem._overlap_violation_vectorized(x_individual),\\n problem._distance_violation_vectorized(x_individual),\\n problem._heat_negative_violation_vectorized(x_individual)\\n ]\\n\\n # 检查是否满足所有约束\\n if (ind_violations[0] <= tolerance and\\n ind_violations[1] <= tolerance and\\n ind_violations[2] <= tolerance and\\n ind_violations[3] <= heat_negative_tolerance):\\n # 如果满足约束且目标函数值更好\\n if f_individual < best_feasible_fitness:\\n best_feasible_solution = x_individual.copy()\\n best_feasible_fitness = f_individual\\n\\n if best_feasible_solution is not None:\\n # 找到满足所有约束的历史最佳解\\n\\n # 使用找到的可行解\\n--\\n return {\\n \\\"camps\\\": camps,\\n \\\"otherAreas\\\": other_areas_result, # 新增其他区域布局结果\\n \\\"code\\\": 200,\\n \\\"message\\\": \\\"Success\\\",\\n \\\"runtime\\\": runtime,\\n \\\"optimization_scores\\\": {\\n \\\"maximization_score\\\": float(maximization_score),\\n\", \"stdout\": \" return {\\n \\\"camps\\\": camps,\\n \\\"otherAreas\\\": other_areas_result, # 新增其他区域布局结果\\n \\\"code\\\": 200,\\n \\\"message\\\": \\\"Success\\\",\\n \\\"runtime\\\": runtime,\\n \\\"optimization_scores\\\": {\\n \\\"maximization_score\\\": float(maximization_score),\\n \\\"dispersion_score\\\": float(dispersion_score),\\n \\\"suitability_score\\\": float(suitability_score),\\n \\\"forward_score\\\": float(forward_score),\\n \\\"withdrawal_score\\\": float(withdrawal_score),\\n \\\"combined_score\\\": float(-res.F[0])\\n }\\n }\\n else:\\n # 尝试从历史中找到满足所有约束的最佳解\\n\\n best_feasible_solution = None\\n best_feasible_fitness = float('inf')\\n\\n if res.history is not None:\\n for gen in res.history:\\n pop = gen.pop\\n X_pop = pop.get(\\\"X\\\")\\n F_pop = pop.get(\\\"F\\\")\\n\\n if X_pop is not None and F_pop is not None:\\n for j, (x_individual, f_individual) in enumerate(zip(X_pop, F_pop)):\\n # 计算该个体的约束违反\\n ind_violations = [\\n problem._boundary_violation_vectorized(x_individual),\\n problem._overlap_violation_vectorized(x_individual),\\n problem._distance_violation_vectorized(x_individual),\\n problem._heat_negative_violation_vectorized(x_individual)\\n ]\\n\\n # 检查是否满足所有约束\\n if (ind_violations[0] <= tolerance and\\n ind_violations[1] <= tolerance and\\n ind_violations[2] <= tolerance and\\n ind_violations[3] <= heat_negative_tolerance):\\n # 如果满足约束且目标函数值更好\\n if f_individual < best_feasible_fitness:\\n best_feasible_solution = x_individual.copy()\\n best_feasible_fitness = f_individual\\n\\n if best_feasible_solution is not None:\\n # 找到满足所有约束的历史最佳解\\n\\n # 使用找到的可行解\\n--\\n return {\\n \\\"camps\\\": camps,\\n \\\"otherAreas\\\": other_areas_result, # 新增其他区域布局结果\\n \\\"code\\\": 200,\\n \\\"message\\\": \\\"Success\\\",\\n \\\"runtime\\\": runtime,\\n \\\"optimization_scores\\\": {\\n \\\"maximization_score\\\": float(maximization_score),\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"grep -A 50 \\\"return {\\\" /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py | head -60\"}",
"timestamp": "2025-09-25T09:57:51.948092",
"tool_call_id": "run_command:19",
"name": "run_command"
},
{
"role": "assistant",
"content": "现在让我取消聚焦这两个文件,并总结关键信息:",
"timestamp": "2025-09-25T09:57:53.896134"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:53.902978",
"tool_calls": [
{
"id": "unfocus_file:20",
"index": 0,
"type": "function",
"function": {
"name": "unfocus_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"message\": \"已取消文件聚焦: /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/zongti.py\", \"remaining_focused\": [\"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"]}",
"timestamp": "2025-09-25T09:57:55.714409",
"tool_call_id": "unfocus_file:20",
"name": "unfocus_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:57:57.181418",
"tool_calls": [
{
"id": "unfocus_file:21",
"index": 0,
"type": "function",
"function": {
"name": "unfocus_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"message\": \"已取消文件聚焦: /Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/Camp_layout_gaocheng_fsbj_yichuan.py\", \"remaining_focused\": []}",
"timestamp": "2025-09-25T09:57:58.992800",
"tool_call_id": "unfocus_file:21",
"name": "unfocus_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:58:01.388515",
"tool_calls": [
{
"id": "create_file:22",
"index": 0,
"type": "function",
"function": {
"name": "create_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/algorithm_analysis.md\", \"file_type\": \"md\", \"annotation\": \"算法分析文档,记录当前系统结构和接口信息\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"路径规划/algorithm_analysis.md\", \"size\": 0}",
"timestamp": "2025-09-25T09:58:03.199962",
"tool_call_id": "create_file:22",
"name": "create_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:58:30.749749",
"tool_calls": [
{
"id": "modify_file:23",
"index": 0,
"type": "function",
"function": {
"name": "modify_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/algorithm_analysis.md\", \"operation\": \"replace\", \"old_text\": \"\", \"content\": \"# 路径规划算法分析报告\\n\\n## 当前系统结构分析\\n\\n### 1. 总体架构 (zongti.py)\\n\\n#### 主要接口函数\\n- **yingdibuju()**: 营地布局算法接口\\n - 路由: `/api/suanfa/yingdi` (POST)\\n - 支持算法: 遗传(yc)、变尺度(bcd)、鲸鱼(jy)、狼群(lq)、拟牛顿(nd)、萤火虫(yhc)、梯度(tdf)、**模拟退火(mnth)**\\n - 布局策略: 集中布局(jzbj)、分散布局(fsbj)\\n\\n- **sheshibuju()**: 设施布局算法接口 \\n - 路由: `/api/suanfa/sheshi` (POST)\\n - 支持算法: NSGA3(非支配排序遗传算法第三代)、粒子群(lzq)\\n - 默认算法: NSGA3\\n - 目标函数权重: 分散度、可达性、关联度、屏蔽度、适宜性\\n\\n- **shigong_router()**: 施工算法接口\\n - 路由: `/api/suanfa/shigong` (POST)\\n - 支持算法: NSGA3、benders、lagrange、lsc、zsl、fzdj\\n - 实际调用: 全部映射到 `main_shigong_yichuan` (遗传算法)\\n\\n#### 关键依赖\\n```python\\nfrom construction import main_shigong_yichuan_v5 as main_shigong_yichuan\\nfrom Facility_main_faster import facility_layout_main\\n```\\n\\n### 2. 营地布局算法 (Camp_layout_gaocheng_fsbj_yichuan.py)\\n\\n#### 核心问题定义\\n- **CampProblem类**: 继承自ElementwiseProblem的优化问题定义\\n - 支持多目标权重优化\\n - 包含热力负值约束和场景方向\\n - 约束条件: 边界、重叠、负热力、距离\\n\\n#### 主要算法函数\\n- **main_gaocheng_yichuan_camp()**: 主遗传算法函数\\n - 输入: input_data(Dict), grid_path(str), config_path(str), index(int)\\n - 输出: Dict包含camps、otherAreas、code、message、runtime、optimization_scores\\n - 使用pymoo库的GA算法\\n - 参数: popSize, maxGenerations, crossoverProb, crossoverEta, mutationProb, mutationEta\\n\\n- **main_gaocheng_yichuan_camp_staged()**: 分阶段布局版本\\n\\n#### 算法配置参数\\n```python\\ndefault_params = {\\n 'popSize': 100,\\n 'maxGenerations': 30,\\n 'crossoverProb': 0.9,\\n 'crossoverEta': 15,\\n 'mutationProb': 0.1,\\n 'mutationEta': 20\\n}\\n```\\n\\n#### 目标函数\\n- maximization_score: 最大化得分\\n- dispersion_score: 分散度得分 \\n- suitability_score: 适宜性得分\\n- forward_score: 前进方向得分\\n- withdrawal_score: 撤退方向得分\\n- combined_score: 综合得分\\n\\n### 3. 关键数据结构\\n\\n#### 输入数据格式 (input_data)\\n```json\\n{\\n \\\"layoutAlgorithm\\\": \\\"算法名称\\\",\\n \\\"layoutStrategy\\\": \\\"布局策略\\\", \\n \\\"campIds\\\": [\\\"营地ID列表\\\"],\\n \\\"scene\\\": \\\"场景参数\\\",\\n \\\"gridSize\\\": 网格大小,\\n \\\"functionWeight\\\": [权重列表],\\n \\\"algorithmParams\\\": {算法参数}\\n}\\n```\\n\\n#### 输出数据格式\\n```json\\n{\\n \\\"camps\\\": [营地布局结果],\\n \\\"otherAreas\\\": [其他区域布局结果],\\n \\\"code\\\": 200,\\n \\\"message\\\": \\\"Success\\\",\\n \\\"runtime\\\": 运行时间,\\n \\\"optimization_scores\\\": {\\n \\\"maximization_score\\\": 浮点数,\\n \\\"dispersion_score\\\": 浮点数,\\n \\\"suitability_score\\\": 浮点数,\\n \\\"forward_score\\\": 浮点数,\\n \\\"withdrawal_score\\\": 浮点数,\\n \\\"combined_score\\\": 浮点数\\n }\\n}\\n```\\n\\n### 4. 当前问题\\n\\n1. **算法单一性**: 虽然接口支持多种算法,但实际实现都使用遗传算法\\n2. **硬编码映射**: 所有算法都映射到同一个遗传算法实现\\n3. **缺乏算法特性**: 不同算法的独特优势没有体现\\n\\n### 5. 模拟退火算法实现需求\\n\\n#### 需要实现的功能\\n1. 创建独立的模拟退火算法实现\\n2. 保持与现有接口兼容\\n3. 支持相同的目标函数和约束条件\\n4. 提供算法特有的参数配置\\n\\n#### 算法参数需求\\n- 初始温度 (initial_temperature)\\n- 终止温度 (final_temperature) \\n- 降温速率 (cooling_rate)\\n- 每个温度的迭代次数 (iterations_per_temperature)\\n- 邻域搜索参数 (neighborhood_params)\\n\\n#### 集成要求\\n- 保持现有输入输出格式\\n- 支持相同的目标函数权重\\n- 兼容现有的约束处理机制\\n- 提供详细的优化过程信息\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"路径规划/algorithm_analysis.md\", \"size\": 2660, \"mode\": \"w\", \"replacements\": 1}",
"timestamp": "2025-09-25T09:58:32.562761",
"tool_call_id": "modify_file:23",
"name": "modify_file"
},
{
"role": "assistant",
"content": "基于对系统的深入分析,我现在为你设计并实现一个高效的模拟退火算法。让我创建模拟退火算法的核心实现:",
"timestamp": "2025-09-25T09:58:36.277952"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T09:58:36.284383",
"tool_calls": [
{
"id": "create_file:24",
"index": 0,
"type": "function",
"function": {
"name": "create_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/simulated_annealing.py\", \"file_type\": \"py\", \"annotation\": \"模拟退火算法核心实现,用于营地布局优化\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"路径规划/simulated_annealing.py\", \"size\": 0}",
"timestamp": "2025-09-25T09:58:38.096038",
"tool_call_id": "create_file:24",
"name": "create_file"
},
{
"role": "assistant",
"content": ":\\",
"timestamp": "2025-09-25T10:00:24.647363"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T10:00:24.651326",
"tool_calls": [
{
"id": "modify_file:25",
"index": 0,
"type": "function",
"function": {
"name": "modify_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/simulated_annealing.py\", \"operation\": \"replace\", \"old_text\": \"\", \"content\": \"\\\"\\\"\\\"\\n模拟退火算法实现 - 用于营地布局优化\\n基于物理退火原理通过控制温度参数实现全局搜索到局部搜索的平滑过渡\\n\\\"\\\"\\\"\\n\\nimport numpy as np\\nimport json\\nimport time\\nimport random\\nimport math\\nfrom typing import Dict, List, Tuple, Optional\\nfrom dataclasses import dataclass\\n\\n\\n@dataclass\\nclass SimulatedAnnealingParams:\\n \\\"\\\"\\\"模拟退火算法参数配置\\\"\\\"\\\"\\n initial_temperature: float = 1000.0\\n final_temperature: float = 0.1\\n cooling_rate: float = 0.95\\n iterations_per_temperature: int = 100\\n max_stagnation_iterations: int = 50\\n acceptance_threshold: float = 0.001\\n neighborhood_size: float = 0.1\\n adaptive_cooling: bool = True\\n reheating_enabled: bool = True\\n reheating_threshold: float = 0.05\\n\\n\\nclass CampLayoutSolution:\\n \\\"\\\"\\\"营地布局解决方案类\\\"\\\"\\\"\\n \\n def __init__(self, positions: np.ndarray, config: Dict):\\n self.positions = positions.copy()\\n self.config = config\\n self.fitness_scores = {}\\n self.total_fitness = 0.0\\n self.constraint_violations = {}\\n self.is_feasible = True\\n \\n def copy(self):\\n \\\"\\\"\\\"创建解决方案的深拷贝\\\"\\\"\\\"\\n new_solution = CampLayoutSolution(self.positions, self.config)\\n new_solution.fitness_scores = self.fitness_scores.copy()\\n new_solution.total_fitness = self.total_fitness\\n new_solution.constraint_violations = self.constraint_violations.copy()\\n new_solution.is_feasible = self.is_feasible\\n return new_solution\\n\\n\\nclass CampLayoutProblemSA:\\n \\\"\\\"\\\"营地布局问题定义 - 适配模拟退火算法\\\"\\\"\\\"\\n \\n def __init__(self, config: Dict):\\n self.config = config\\n \\n # 基础参数\\n self.num_camps = config.get('numCamp', 5)\\n self.field_width = config.get('FIELD_WIDTH', 100)\\n self.field_height = config.get('FIELD_HEIGHT', 100)\\n self.min_size = config.get('minSize', 5)\\n self.max_size = config.get('maxSize', 15)\\n self.grid_size = config.get('gridSize', 1.0)\\n \\n # 目标函数权重\\n self.weights = config.get('functionWeight', [0.2, 0.2, 0.2, 0.2, 0.2])\\n \\n # 热力图数据\\n self.heatmap_grid = np.array(config.get('heatmap_grid', np.ones((100, 100))))\\n self.max_heat = np.max(self.heatmap_grid)\\n \\n # 约束参数\\n self.min_distance = config.get('minDistance', 10.0)\\n self.safe_distance = config.get('safeDistance', 5.0)\\n \\n # 计算理论极值\\n self.min_area = self.min_size ** 2\\n self.max_area = self.max_size ** 2\\n self.max_possible_dist = np.sqrt(self.field_width**2 + self.field_height**2)\\n \\n def generate_initial_solution(self) -> CampLayoutSolution:\\n \\\"\\\"\\\"生成初始解 - 使用启发式方法\\\"\\\"\\\"\\n positions = np.zeros((self.num_camps, 4)) # x, y, width, height\\n \\n # 使用网格化初始布局避免重叠\\n grid_cols = int(np.ceil(np.sqrt(self.num_camps)))\\n grid_rows = int(np.ceil(self.num_camps / grid_cols))\\n \\n cell_width = self.field_width / grid_cols\\n cell_height = self.field_height / grid_rows\\n \\n for i in range(self.num_camps):\\n row = i // grid_cols\\n col = i % grid_cols\\n \\n # 在网格单元内随机位置\\n x = col * cell_width + random.uniform(0.1, 0.9) * cell_width\\n y = row * cell_height + random.uniform(0.1, 0.9) * cell_height\\n \\n # 随机尺寸\\n size = random.uniform(self.min_size, self.max_size)\\n \\n positions[i] = [x, y, size, size]\\n \\n solution = CampLayoutSolution(positions, self.config)\\n self.evaluate_solution(solution)\\n return solution\\n \\n def evaluate_solution(self, solution: CampLayoutSolution) -> float:\\n \\\"\\\"\\\"评估解决方案的适应度\\\"\\\"\\\"\\n positions = solution.positions\\n total_score = 0.0\\n violations = {}\\n \\n # 1. 适宜性得分 (基于热力图)\\n suitability_score = self._calculate_suitability_score(positions)\\n solution.fitness_scores['suitability'] = suitability_score\\n total_score += self.weights[0] * suitability_score\\n \\n # 2. 分散度得分 (营地间平均距离)\\n dispersion_score = self._calculate_dispersion_score(positions)\\n solution.fitness_scores['dispersion'] = dispersion_score\\n total_score += self.weights[1] * dispersion_score\\n \\n # 3. 边界约束得分\\n boundary_score, boundary_violation = self._calculate_boundary_score(positions)\\n solution.fitness_scores['boundary'] = boundary_score\\n violations['boundary'] = boundary_violation\\n total_score += self.weights[2] * boundary_score\\n \\n # 4. 重叠约束得分\\n overlap_score, overlap_violation = self._calculate_overlap_score(positions)\\n solution.fitness_scores['overlap'] = overlap_score\\n violations['overlap'] = overlap_violation\\n total_score += self.weights[3] * overlap_score\\n \\n # 5. 距离约束得分\\n distance_score, distance_violation = self._calculate_distance_score(positions)\\n solution.fitness_scores['distance'] = distance_score\\n violations['distance'] = distance_violation\\n total_score += self.weights[4] * distance_score\\n \\n solution.total_fitness = total_score\\n solution.constraint_violations = violations\\n solution.is_feasible = all(v <= 1e-6 for v in violations.values())\\n \\n return total_score\\n \\n def _calculate_suitability_score(self, positions: np.ndarray) -> float:\\n \\\"\\\"\\\"计算适宜性得分 - 基于热力图\\\"\\\"\\\"\\n total_heat = 0.0\\n total_area = 0\\n \\n for pos in positions:\\n x, y, width, height = pos\\n \\n # 转换为网格坐标\\n grid_x = int(x / self.grid_size)\\n grid_y = int(y / self.grid_size)\\n grid_w = int(width / self.grid_size)\\n grid_h = int(height / self.grid_size)\\n \\n # 确保不超出边界\\n grid_x = max(0, min(grid_x, self.heatmap_grid.shape[1] - 1))\\n grid_y = max(0, min(grid_y, self.heatmap_grid.shape[0] - 1))\\n grid_w = max(1, min(grid_w, self.heatmap_grid.shape[1] - grid_x))\\n grid_h = max(1, min(grid_h, self.heatmap_grid.shape[0] - grid_y))\\n \\n # 计算热力值\\n heat_sum = np.sum(self.heatmap_grid[grid_y:grid_y+grid_h, grid_x:grid_x+grid_w])\\n area = grid_w * grid_h\\n \\n total_heat += heat_sum\\n total_area += area\\n \\n if total_area > 0:\\n avg_heat = total_heat / total_area\\n return avg_heat / self.max_heat if self.max_heat > 0 else 0.0\\n return 0.0\\n \\n def _calculate_dispersion_score(self, positions: np.ndarray) -> float:\\n \\\"\\\"\\\"计算分散度得分 - 基于营地间平均距离\\\"\\\"\\\"\\n total_distance = 0.0\\n num_pairs = 0\\n \\n for i in range(self.num_camps):\\n for j in range(i + 1, self.num_camps):\\n x1, y1, _, _ = positions[i]\\n x2, y2, _, _ = positions[j]\\n \\n distance = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)\\n total_distance += distance\\n num_pairs += 1\\n \\n if num_pairs > 0:\\n avg_distance = total_distance / num_pairs\\n return avg_distance / self.max_possible_dist\\n return 0.0\\n \\n def _calculate_boundary_score(self, positions: np.ndarray) -> Tuple[float, float]:\\n \\\"\\\"\\\"计算边界约束得分和违反量\\\"\\\"\\\"\\n total_violation = 0.0\\n \\n for pos in positions:\\n x, y, width, height = pos\\n \\n # 计算边界违反\\n left_violation = max(0, -x)\\n right_violation = max(0, (x + width) - self.field_width)\\n top_violation = max(0, -y)\\n bottom_violation = max(0, (y + height) - self.field_height)\\n \\n total_violation += left_violation + right_violation + top_violation + bottom_violation\\n \\n # 归一化违反量\\n max_possible_violation = self.num_camps * 2 * max(self.field_width, self.field_height)\\n normalized_violation = total_violation / max_possible_violation if max_possible_violation > 0 else 0.0\\n \\n # 得分 = 1 - 违反量\\n score = max(0.0, 1.0 - normalized_violation)\\n return score, normalized_violation\\n \\n def _calculate_overlap_score(self, positions: np.ndarray) -> Tuple[float, float]:\\n \\\"\\\"\\\"计算重叠约束得分和违反量\\\"\\\"\\\"\\n total_overlap_area = 0.0\\n \\n for i in range(self.num_camps):\\n for j in range(i + 1, self.num_camps):\\n x1, y1, w1, h1 = positions[i]\\n x2, y2, w2, h2 = positions[j]\\n \\n # 计算矩形重叠\\n left = max(x1, x2)\\n right = min(x1 + w1, x2 + w2)\\n top = max(y1, y2)\\n bottom = min(y1 + h1, y2 + h2)\\n \\n if left < right and top < bottom:\\n overlap_area = (right - left) * (bottom - top)\\n total_overlap_area += overlap_area\\n \\n # 归一化重叠面积\\n max_possible_overlap = self.num_camps * self.max_area\\n normalized_overlap = total_overlap_area / max_possible_overlap if max_possible_overlap > 0 else 0.0\\n \\n # 得分 = 1 - 重叠率\\n score = max(0.0, 1.0 - normalized_overlap)\\n return score, normalized_overlap\\n \\n def _calculate_distance_score(self, positions: np.ndarray) -> Tuple[float, float]:\\n \\\"\\\"\\\"计算距离约束得分和违反量\\\"\\\"\\\"\\n total_violation = 0.0\\n \\n for i in range(self.num_camps):\\n for j in range(i + 1, self.num_camps):\\n x1, y1, _, _ = positions[i]\\n x2, y2, _, _ = positions[j]\\n \\n distance = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)\\n \\n if distance < self.min_distance:\\n violation = self.min_distance - distance\\n total_violation += violation\\n \\n # 归一化违反量\\n max_possible_violation = self.num_camps * self.min_distance\\n normalized_violation = total_violation / max_possible_violation if max_possible_violation > 0 else 0.0\\n \\n # 得分 = 1 - 违反率\\n score = max(0.0, 1.0 - normalized_violation)\\n return score, normalized_violation\\n\\n\\nclass SimulatedAnnealingOptimizer:\\n \\\"\\\"\\\"模拟退火优化器\\\"\\\"\\\"\\n \\n def __init__(self, problem: CampLayoutProblemSA, params: SimulatedAnnealingParams):\\n self.problem = problem\\n self.params = params\\n self.current_solution = None\\n self.best_solution = None\\n self.temperature = params.initial_temperature\\n self.iteration = 0\\n self.stagnation_count = 0\\n self.history = []\\n \\n def optimize(self, max_iterations: Optional[int] = None) -> CampLayoutSolution:\\n \\\"\\\"\\\"执行模拟退火优化\\\"\\\"\\\"\\n if max_iterations is None:\\n max_iterations = self._calculate_max_iterations()\\n \\n # 生成初始解\\n self.current_solution = self.problem.generate_initial_solution()\\n self.best_solution = self.current_solution.copy()\\n \\n self.history = [{\\n 'iteration': 0,\\n 'temperature': self.temperature,\\n 'current_fitness': self.current_solution.total_fitness,\\n 'best_fitness': self.best_solution.total_fitness,\\n 'acceptance_rate': 1.0\\n }]\\n \\n acceptance_count = 0\\n total_transitions = 0\\n \\n for self.iteration in range(1, max_iterations + 1):\\n # 生成邻域解\\n neighbor_solution = self._generate_neighbor_solution()\\n \\n # 评估邻域解\\n neighbor_fitness = self.problem.evaluate_solution(neighbor_solution)\\n current_fitness = self.current_solution.total_fitness\\n \\n # 决定是否接受新解\\n if self._accept_solution(current_fitness, neighbor_fitness):\\n self.current_solution = neighbor_solution\\n acceptance_count += 1\\n \\n # 更新最佳解\\n if neighbor_fitness > self.best_solution.total_fitness:\\n self.best_solution = neighbor_solution.copy()\\n self.stagnation_count = 0\\n else:\\n self.stagnation_count += 1\\n else:\\n self.stagnation_count += 1\\n \\n total_transitions += 1\\n \\n # 记录历史\\n self.history.append({\\n 'iteration': self.iteration,\\n 'temperature': self.temperature,\\n 'current_fitness': self.current_solution.total_fitness,\\n 'best_fitness': self.best_solution.total_fitness,\\n 'acceptance_rate': acceptance_count / total_transitions if total_transitions > 0 else 0.0\\n })\\n \\n # 自适应降温\\n if self.params.adaptive_cooling:\\n acceptance_rate = acceptance_count / total_transitions if total_transitions > 0 else 0.0\\n self._adaptive_cooling(acceptance_rate)\\n else:\\n self.temperature *= self.params.cooling_rate\\n \\n # 检查终止条件\\n if self._should_terminate():\\n break\\n \\n # 重置计数器\\n if self.iteration % self.params.iterations_per_temperature == 0:\\n acceptance_count = 0\\n total_transitions = 0\\n \\n return self.best_solution\\n \\n def _calculate_max_iterations(self) -> int:\\n \\\"\\\"\\\"计算最大迭代次数\\\"\\\"\\\"\\n # 基于温度下降计算\\n temp_ratio = self.params.initial_temperature / self.params.final_temperature\\n num_temperature_steps = int(np.ceil(np.log(temp_ratio) / np.log(1.0 / self.params.cooling_rate)))\\n return num_temperature_steps * self.params.iterations_per_temperature\\n \\n def _generate_neighbor_solution(self) -> CampLayoutSolution:\\n \\\"\\\"\\\"生成邻域解\\\"\\\"\\\"\\n neighbor = self.current_solution.copy()\\n \\n # 随机选择扰动类型\\n perturbation_type = random.choice(['position', 'size', 'swap'])\\n \\n if perturbation_type == 'position':\\n # 位置扰动\\n camp_idx = random.randint(0, self.problem.num_camps - 1)\\n dx = random.uniform(-self.params.neighborhood_size * self.problem.field_width,\\n self.params.neighborhood_size * self.problem.field_width)\\n dy = random.uniform(-self.params.neighborhood_size * self.problem.field_height,\\n self.params.neighborhood_size * self.problem.field_height)\\n \\n neighbor.positions[camp_idx, 0] += dx\\n neighbor.positions[camp_idx, 1] += dy\\n \\n elif perturbation_type == 'size':\\n # 尺寸扰动\\n camp_idx = random.randint(0, self.problem.num_camps - 1)\\n size_change = random.uniform(-self.params.neighborhood_size * self.problem.max_size,\\n self.params.neighborhood_size * self.problem.max_size)\\n \\n neighbor.positions[camp_idx, 2] += size_change # width\\n neighbor.positions[camp_idx, 3] += size_change # height\\n \\n elif perturbation_type == 'swap':\\n # 交换两个营地的位置\\n if self.problem.num_camps >= 2"
}
}
]
},
{
"role": "assistant",
"content": "n_HEIGHT",
"timestamp": "2025-09-25T10:01:43.946326"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T10:01:43.954678",
"tool_calls": [
{
"id": "modify_file:25",
"index": 0,
"type": "function",
"function": {
"name": "modify_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/路径规划/simulated_annealing.py\", \"operation\": \"replace\", \"old_text\": \"\", \"content\": \"\\\"\\\"\\\"\\n模拟退火算法实现 - 用于营地布局优化\\n基于物理退火原理通过控制温度参数实现全局搜索到局部搜索的平滑过渡\\n\\\"\\\"\\\"\\n\\nimport numpy as np\\nimport random\\nimport math\\nimport time\\nimport json\\nfrom typing import Dict, List, Tuple, Optional\\nfrom dataclasses import dataclass\\n\\n\\n@dataclass\\nclass SimulatedAnnealingParams:\\n \\\"\\\"\\\"模拟退火算法参数配置\\\"\\\"\\\"\\n initial_temperature: float = 1000.0\\n final_temperature: float = 0.1\\n cooling_rate: float = 0.95\\n iterations_per_temperature: int = 100\\n max_stagnation_iterations: int = 50\\n acceptance_threshold: float = 0.001\\n neighborhood_size: float = 0.1\\n adaptive_cooling: bool = True\\n reheating_enabled: bool = True\\n reheating_threshold: float = 0.8\\n\\n\\nclass CampLayoutSolution:\\n \\\"\\\"\\\"营地布局解决方案\\\"\\\"\\\"\\n \\n def __init__(self, positions: np.ndarray, config: Dict):\\n \\\"\\\"\\\"\\n 初始化解决方案\\n Args:\\n positions: 营地位置数组,形状为(n_camps, 3) [x, y, size]\\n config: 配置字典\\n \\\"\\\"\\\"\\n self.positions = positions.copy()\\n self.config = config\\n self.n_camps = len(positions)\\n self.objective_values = None\\n self.constraint_violations = None\\n self.fitness_score = None\\n \\n def copy(self) -> 'CampLayoutSolution':\\n \\\"\\\"\\\"创建解决方案的深拷贝\\\"\\\"\\\"\\n new_solution = CampLayoutSolution(self.positions.copy(), self.config)\\n new_solution.objective_values = self.objective_values.copy() if self.objective_values is not None else None\\n new_solution.constraint_violations = self.constraint_violations.copy() if self.constraint_violations is not None else None\\n new_solution.fitness_score = self.fitness_score\\n return new_solution\\n\\n\\nclass CampLayoutObjective:\\n \\\"\\\"\\\"营地布局目标函数计算器\\\"\\\"\\\"\\n \\n def __init__(self, config: Dict):\\n self.config = config\\n self.weights = np.array(config.get('functionWeight', [0.2, 0.2, 0.2, 0.2, 0.2]))\\n self.heatmap_grid = np.array(config['heatmap_grid'])\\n self.max_possible_dist = np.sqrt(config['FIELD_WIDTH'] ** 2 + config['FIELD_HEIGHT'] ** 2)\\n self.max_heat = np.max(self.heatmap_grid)\\n \\n # 网格参数\\n self.agg_rows, self.agg_cols = self.heatmap_grid.shape\\n self.dx = config.get('field_width_real', 1000.0) / self.agg_cols\\n self.dy = config.get('field_height_real', 1000.0) / self.agg_rows\\n \\n # 约束参数\\n self.min_size = config.get('minSize', 10)\\n self.max_size = config.get('maxSize', 50)\\n self.min_distance = config.get('minDistance', 30)\\n \\n def evaluate(self, solution: CampLayoutSolution) -> Tuple[float, Dict]:\\n \\\"\\\"\\\"\\n 评估解决方案\\n Returns:\\n fitness_score: 适应度分数(越小越好)\\n detailed_scores: 详细评分字典\\n \\\"\\\"\\\"\\n positions = solution.positions\\n \\n # 计算各目标分量\\n scores = {}\\n \\n # 1. 分散度得分 (Dispersion)\\n scores['dispersion'] = self._calculate_dispersion(positions)\\n \\n # 2. 适宜性得分 (Suitability) - 基于热力图\\n scores['suitability'] = self._calculate_suitability(positions)\\n \\n # 3. 关联度得分 (Connectivity) - 基于距离\\n scores['connectivity'] = self._calculate_connectivity(positions)\\n \\n # 4. 屏蔽度得分 (Shielding) - 地形屏蔽\\n scores['shielding'] = self._calculate_shielding(positions)\\n \\n # 5. 可达性得分 (Accessibility) - 道路可达性\\n scores['accessibility'] = self._calculate_accessibility(positions)\\n \\n # 计算加权和\\n weighted_sum = sum(scores[key] * weight for key, weight in \\n zip(['dispersion', 'suitability', 'connectivity', 'shielding', 'accessibility'], self.weights))\\n \\n # 约束违反惩罚\\n constraint_penalty = self._calculate_constraint_violation(positions)\\n \\n # 总适应度(越小越好)\\n fitness_score = -weighted_sum + constraint_penalty * 1000\\n \\n solution.objective_values = scores\\n solution.fitness_score = fitness_score\\n \\n return fitness_score, scores\\n \\n def _calculate_dispersion(self, positions: np.ndarray) -> float:\\n \\\"\\\"\\\"计算分散度得分\\\"\\\"\\\"\\n if len(positions) < 2:\\n return 0.0\\n \\n # 计算所有营地间的平均距离\\n total_distance = 0.0\\n count = 0\\n \\n for i in range(len(positions)):\\n for j in range(i + 1, len(positions)):\\n dist = np.sqrt((positions[i][0] - positions[j][0]) ** 2 + \\n (positions[i][1] - positions[j][1]) ** 2)\\n total_distance += dist\\n count += 1\\n \\n avg_distance = total_distance / count if count > 0 else 0.0\\n # 归一化到0-1范围\\n return min(avg_distance / self.max_possible_dist, 1.0)\\n \\n def _calculate_suitability(self, positions: np.ndarray) -> float:\\n \\\"\\\"\\\"计算适宜性得分(基于热力图)\\\"\\\"\\\"\\n total_suitability = 0.0\\n \\n for pos in positions:\\n x, y, size = pos\\n \\n # 转换为网格坐标\\n grid_x = int(x / self.dx)\\n grid_y = int(y / self.dy)\\n \\n # 确保在网格范围内\\n grid_x = max(0, min(grid_x, self.agg_cols - 1))\\n grid_y = max(0, min(grid_y, self.agg_rows - 1))\\n \\n # 获取该位置的热力值(假设热力值越高越适宜)\\n heat_value = self.heatmap_grid[grid_y, grid_x]\\n suitability = heat_value / self.max_heat if self.max_heat > 0 else 0.0\\n \\n total_suitability += suitability\\n \\n return total_suitability / len(positions) if len(positions) > 0 else 0.0\\n \\n def _calculate_connectivity(self, positions: np.ndarray) -> float:\\n \\\"\\\"\\\"计算关联度得分\\\"\\\"\\\"\\n # 简化的连通性计算:基于营地间的连接性\\n if len(positions) < 2:\\n return 1.0\\n \\n # 计算最小生成树的平均边长\\n from scipy.spatial.distance import pdist, squareform\\n \\n coords = positions[:, :2] # 只取x,y坐标\\n distances = squareform(pdist(coords))\\n \\n # 使用Kruskal算法的简化版本\\n n = len(positions)\\n edges = []\\n for i in range(n):\\n for j in range(i + 1, n):\\n edges.append((distances[i][j], i, j))\\n \\n edges.sort()\\n \\n # 并查集\\n parent = list(range(n))\\n \\n def find(x):\\n if parent[x] != x:\\n parent[x] = find(parent[x])\\n return parent[x]\\n \\n def union(x, y):\\n px, py = find(x), find(y)\\n if px != py:\\n parent[px] = py\\n \\n total_length = 0.0\\n edge_count = 0\\n \\n for dist, i, j in edges:\\n if find(i) != find(j):\\n union(i, j)\\n total_length += dist\\n edge_count += 1\\n if edge_count == n - 1:\\n break\\n \\n # 归一化\\n avg_length = total_length / edge_count if edge_count > 0 else 0.0\\n return 1.0 - min(avg_length / self.max_possible_dist, 1.0)\\n \\n def _calculate_shielding(self, positions: np.ndarray) -> float:\\n \\\"\\\"\\\"计算屏蔽度得分\\\"\\\"\\\"\\n # 基于地形的屏蔽效果计算\\n # 这里使用简化的模型:假设某些方向有更好的屏蔽效果\\n \\n shielding_score = 0.0\\n for pos in positions:\\n x, y = pos[0], pos[1]\\n \\n # 计算相对于场地中心的方位\\n center_x = self.config['FIELD_WIDTH'] / 2\\n center_y = self.config['FIELD_HEIGHT'] / 2\\n \\n # 基于位置的屏蔽效果(简化模型)\\n # 边缘位置有更好的屏蔽效果\\n dist_from_center = np.sqrt((x - center_x) ** 2 + (y - center_y) ** 2)\\n max_dist_from_center = np.sqrt(center_x ** 2 + center_y ** 2)\\n \\n shielding = dist_from_center / max_dist_from_center\\n shielding_score += shielding\\n \\n return shielding_score / len(positions) if len(positions) > 0 else 0.0\\n \\n def _calculate_accessibility(self, positions: np.ndarray) -> float:\\n \\\"\\\"\\\"计算可达性得分\\\"\\\"\\\"\\n # 基于到场地边界的距离计算可达性\\n field_width = self.config['FIELD_WIDTH']\\n field_height = self.config['FIELD_HEIGHT']\\n \\n accessibility_score = 0.0\\n for pos in positions:\\n x, y = pos[0], pos[1]\\n \\n # 计算到四个边界的最近距离\\n dist_to_left = x\\n dist_to_right = field_width - x\\n dist_to_bottom = y\\n dist_to_top = field_height - y\\n \\n min_dist_to_boundary = min(dist_to_left, dist_to_right, dist_to_bottom, dist_to_top)\\n \\n # 归一化\\n max_possible_dist = min(field_width, field_height) / 2\\n accessibility = 1.0 - (min_dist_to_boundary / max_possible_dist)\\n \\n accessibility_score += accessibility\\n \\n return accessibility_score / len(positions) if len(positions) > 0 else 0.0\\n \\n def _calculate_constraint_violation(self, positions: np.ndarray) -> float:\\n \\\"\\\"\\\"计算约束违反的惩罚值\\\"\\\"\\\"\\n total_violation = 0.0\\n n_camps = len(positions)\\n \\n # 1. 边界约束\\n for i, pos in enumerate(positions):\\n x, y, size = pos\\n half_size = size / 2\\n \\n # 检查是否超出边界\\n if x - half_size < 0 or x + half_size > self.config['FIELD_WIDTH']:\\n total_violation += abs(x - half_size) if x - half_size < 0 else abs(x + half_size - self.config['FIELD_WIDTH'])\\n \\n if y - half_size < 0 or y + half_size > self.config['FIELD_HEIGHT']:\\n total_violation += abs(y - half_size) if y - half_size < 0 else abs(y + half_size - self.config['FIELD_HEIGHT'])\\n \\n # 2. 重叠约束\\n for i in range(n_camps):\\n for j in range(i + 1, n_camps):\\n x1, y1, size1 = positions[i]\\n x2, y2, size2 = positions[j]\\n \\n dist = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)\\n min_dist = (size1 + size2) / 2 + self.min_distance\\n \\n if dist < min_dist:\\n total_violation += (min_dist - dist)\\n \\n # 3. 尺寸约束\\n for pos in positions:\\n size = pos[2]\\n if size < self.min_size or size > self.max_size:\\n total_violation += abs(size - self.min_size) if size < self.min_size else abs(size - self.max_size)\\n \\n return total_violation\\n\\n\\nclass SimulatedAnnealingOptimizer:\\n \\\"\\\"\\\"模拟退火优化器\\\"\\\"\\\"\\n \\n def __init__(self, params: SimulatedAnnealingParams = None):\\n self.params = params or SimulatedAnnealingParams()\\n self.current_solution = None\\n self.best_solution = None\\n self.current_temperature = None\\n self.iteration = 0\\n self.stagnation_count = 0\\n self.history = []\\n \\n def optimize(self, initial_solution: CampLayoutSolution, objective: CampLayoutObjective,\\n callback=None) -> Tuple[CampLayoutSolution, Dict]:\\n \\\"\\\"\\\"\\n 执行模拟退火优化\\n \\n Returns:\\n best_solution: 最优解\\n optimization_info: 优化过程信息\\n \\\"\\\"\\\"\\n start_time = time.time()\\n \\n # 初始化\\n self.current_solution = initial_solution.copy()\\n self.best_solution = initial_solution.copy()\\n self.current_temperature = self.params.initial_temperature\\n \\n # 评估初始解\\n current_fitness, current_scores = objective.evaluate(self.current_solution)\\n best_fitness = current_fitness\\n \\n # 记录历史\\n self.history = [{\\n 'iteration': 0,\\n 'temperature': self.current_temperature,\\n 'fitness': current_fitness,\\n 'best_fitness': best_fitness\\n }]\\n \\n # 主优化循环\\n while self.current_temperature > self.params.final_temperature and self.stagnation_count < self.params.max_stagnation_iterations:\\n \\n temperature_accepted = False\\n \\n for _ in range(self.params.iterations_per_temperature):\\n self.iteration += 1\\n \\n # 生成邻域解\\n neighbor_solution = self._generate_neighbor(self.current_solution)\\n \\n # 评估邻域解\\n neighbor_fitness, neighbor_scores = objective.evaluate(neighbor_solution)\\n \\n # 计算接受概率\\n delta_fitness = neighbor_fitness - current_fitness\\n \\n # 接受准则\\n if delta_fitness < 0 or self._accept_worse_solution(delta_fitness):\\n self.current_solution = neighbor_solution\\n current_fitness = neighbor_fitness\\n temperature_accepted = True\\n \\n # 更新最优解\\n if current_fitness < best_fitness:\\n self.best_solution = self.current_solution.copy()\\n best_fitness = current_fitness\\n self.stagnation_count = 0\\n \\n # 记录历史\\n self.history.append({\\n 'iteration': self.iteration,\\n 'temperature': self.current_temperature,\\n 'fitness': current_fitness,\\n 'best_fitness': best_fitness,\\n 'accepted': temperature_accepted\\n })\\n \\n # 回调函数\\n if callback:\\n callback(self.iteration, self.current_temperature, current_fitness, best_fitness)\\n \\n # 更新停滞计数\\n if not temperature_accepted:\\n self.stagnation_count += 1\\n \\n # 降温\\n self._update_temperature()\\n \\n # 计算优化信息\\n end_time = time.time()\\n optimization_info = {\\n 'runtime': end_time - start_time,\\n 'total_iterations': self.iteration,\\n 'final_temperature': self.current_temperature,\\n 'initial_fitness': self.history[0]['fitness'],\\n 'final_fitness': best_fitness,\\n 'improvement': self.history[0]['fitness'] - best_fitness,\\n 'stagnation_iterations': self.stagnation_count,\\n 'history': self.history\\n }\\n \\n return self.best_solution, optimization_info\\n \\n def _generate_neighbor(self, solution: CampLayoutSolution) -> CampLayoutSolution:\\n \\\"\\\"\\\"生成邻域解\\\"\\\"\\\"\\n neighbor = solution.copy()\\n positions = neighbor.positions\\n \\n # 随机选择扰动方式\\n perturbation_type = random.choice(['position', 'size', 'swap'])\\n \\n if perturbation_type == 'position' and len(positions) > 0:\\n # 随机选择一个营地进行位置扰动\\n camp_idx = random.randint(0, len(positions) - 1)\\n \\n # 计算扰动幅度(随温度自适应调整)\\n temperature_factor = self.current_temperature / self.params.initial_temperature\\n perturbation_scale = self.params.neighborhood_size * temperature_factor\\n \\n # 添加高斯扰动\\n dx = random.gauss(0, perturbation_scale * self.config.get('FIELD_WIDTH', 1000))\\n dy = random.gauss(0, perturbation_scale * self.config.get('FIELD"
}
}
]
}
],
"metadata": {
"project_path": "/Users/jojo/Desktop/agent_kimi_源码备份/project",
"thinking_mode": true,
"total_messages": 59,
"total_tools": 52,
"status": "active"
},
"token_statistics": {
"total_input_tokens": 0,
"total_output_tokens": 0,
"updated_at": "2025-09-27T22:43:42.768327"
}
}