agent/users/kzf/data/conversations/conv_20251026_192421_735.json
2025-11-14 16:44:12 +08:00

233 lines
28 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"id": "conv_20251026_192421_735",
"title": "我叫什么",
"created_at": "2025-10-26T19:24:21.735986",
"updated_at": "2025-10-26T19:28:25.298031",
"messages": [
{
"role": "user",
"content": "我叫什么",
"timestamp": "2025-10-26T19:24:26.576447"
},
{
"role": "assistant",
"content": "根据我的记忆记录,您的姓名是**寇子赋**。",
"timestamp": "2025-10-26T19:24:27.667097"
},
{
"role": "user",
"content": "请查看文件",
"timestamp": "2025-10-26T19:26:40.850784"
},
{
"role": "assistant",
"content": "我来查看您上传的文件。根据项目结构,文件位于 `user_upload/xlsx`。",
"timestamp": "2025-10-26T19:26:42.182029"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-26T19:26:42.184410",
"tool_calls": [
{
"id": "read_file:0",
"index": 0,
"type": "function",
"function": {
"name": "read_file",
"arguments": "{\"path\": \"user_upload/xlsx\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"requires_confirmation\": true, \"message\": \"\\u9605\\u8bfb\\u5de5\\u5177\\u53ea\\u80fd\\u7528\\u4e8e\\u9605\\u8bfb\\u5c0f\\u6587\\u4ef6\\u3001\\u4e34\\u65f6\\u6587\\u4ef6\\u3001\\u4e0d\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\u3002\\u5982\\u679c\\u8981\\u67e5\\u770b\\u6838\\u5fc3\\u6587\\u4ef6\\u3001\\u9700\\u8981\\u591a\\u6b21\\u4fee\\u6539\\u7684\\u6587\\u4ef6\\u3001\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\uff0c\\u8bf7\\u4f7f\\u7528\\u805a\\u7126\\u529f\\u80fd\\u3002\\u8bf7\\u786e\\u8ba4\\u4f7f\\u7528\\u9605\\u8bfb\\u8fd8\\u662f\\u805a\\u7126\\uff1f\", \"instruction\": \"\\u8bf7\\u4f7f\\u7528 confirm_read_or_focus \\u5de5\\u5177\\u6765\\u9009\\u62e9\\u64cd\\u4f5c\\u65b9\\u5f0f\\uff0c\\u6587\\u4ef6\\u8def\\u5f84: user_upload/xlsx\", \"file_path\": \"user_upload/xlsx\"}",
"timestamp": "2025-10-26T19:26:43.992204",
"tool_call_id": "read_file:0",
"name": "read_file"
},
{
"role": "assistant",
"content": "我需要确认使用哪种方式来查看这个文件。由于这是一个Excel文件.xlsx格式我需要选择合适的方式",
"timestamp": "2025-10-26T19:26:48.079680"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-26T19:26:48.088845",
"tool_calls": [
{
"id": "confirm_read_or_focus:1",
"index": 0,
"type": "function",
"function": {
"name": "confirm_read_or_focus",
"arguments": "{\"file_path\": \"user_upload/xlsx\", \"choice\": \"read\", \"reason\": \"这是一个Excel文件我需要查看其内容但看起来文件较大43.9KB),可能包含大量数据。先尝试读取查看基本结构和内容。\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"error\": \"\\u8bfb\\u53d6\\u6587\\u4ef6\\u5931\\u8d25: 'utf-8' codec can't decode byte 0x87 in position 10: invalid start byte\"}",
"timestamp": "2025-10-26T19:26:49.905183",
"tool_call_id": "confirm_read_or_focus:1",
"name": "confirm_read_or_focus"
},
{
"role": "assistant",
"content": "这个文件是二进制格式的Excel文件无法直接用文本方式读取。让我用其他方法来查看文件内容",
"timestamp": "2025-10-26T19:26:51.680106"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-26T19:26:51.682839",
"tool_calls": [
{
"id": "run_command:2",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"file user_upload/xlsx\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"user_upload/xlsx: Microsoft Excel 2007+\\n\", \"stdout\": \"user_upload/xlsx: Microsoft Excel 2007+\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"file user_upload/xlsx\"}",
"timestamp": "2025-10-26T19:26:53.491365",
"tool_call_id": "run_command:2",
"name": "run_command"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-26T19:26:54.688210",
"tool_calls": [
{
"id": "run_command:3",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"ls -la user_upload/\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"total 52\\ndrwxr-xr-x 2 root root 4096 Oct 26 19:26 .\\ndrwxr-xr-x 3 root root 4096 Oct 26 19:13 ..\\n-rw-r--r-- 1 root root 44997 Oct 26 19:26 xlsx\\n\", \"stdout\": \"total 52\\ndrwxr-xr-x 2 root root 4096 Oct 26 19:26 .\\ndrwxr-xr-x 3 root root 4096 Oct 26 19:13 ..\\n-rw-r--r-- 1 root root 44997 Oct 26 19:26 xlsx\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"ls -la user_upload/\"}",
"timestamp": "2025-10-26T19:26:56.494685",
"tool_call_id": "run_command:3",
"name": "run_command"
},
{
"role": "assistant",
"content": "我确认这是一个Microsoft Excel 2007+格式的文件(.xlsx大小约45KB。由于这是二进制文件我无法直接读取其内容。让我尝试用Python来读取和分析这个Excel文件",
"timestamp": "2025-10-26T19:27:10.642965"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-26T19:27:10.645772",
"tool_calls": [
{
"id": "run_python:4",
"index": 0,
"type": "function",
"function": {
"name": "run_python",
"arguments": "{\"code\": \"import pandas as pd\\nimport openpyxl\\n\\n# 尝试读取Excel文件\\nfile_path = \\\"user_upload/xlsx\\\"\\n\\ntry:\\n # 首先尝试用pandas读取\\n df = pd.read_excel(file_path)\\n print(\\\"=== 文件基本信息 ===\\\")\\n print(f\\\"文件名: {file_path}\\\")\\n print(f\\\"工作表形状: {df.shape} (行数, 列数)\\\")\\n print(f\\\"列名: {list(df.columns)}\\\")\\n print(f\\\"数据类型:\\\\n{df.dtypes}\\\")\\n print(\\\"\\\\n=== 前5行数据预览 ===\\\")\\n print(df.head())\\n \\nexcept Exception as e:\\n print(f\\\"用pandas读取失败: {e}\\\")\\n \\n # 尝试用openpyxl读取工作簿信息\\n try:\\n wb = openpyxl.load_workbook(file_path)\\n print(\\\"=== 工作簿信息 ===\\\")\\n print(f\\\"工作表名称: {wb.sheetnames}\\\")\\n \\n # 读取第一个工作表\\n ws = wb.active\\n print(f\\\"活动工作表: {ws.title}\\\")\\n print(f\\\"工作表范围: {ws.max_row} 行 x {ws.max_column} 列\\\")\\n \\n # 显示前5行和前5列的数据\\n print(\\\"\\\\n=== 前5行x前5列数据预览 ===\\\")\\n for row in range(1, min(6, ws.max_row + 1)):\\n row_data = []\\n for col in range(1, min(6, ws.max_column + 1)):\\n cell_value = ws.cell(row=row, column=col).value\\n row_data.append(str(cell_value) if cell_value is not None else \\\"None\\\")\\n print(f\\\"行{row}: {row_data}\\\")\\n \\n except Exception as e2:\\n print(f\\\"用openpyxl读取也失败: {e2}\\\")\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"output\": \"\\n[错误输出]\\nTraceback (most recent call last):\\n File \\\"/opt/agent/agents/agents/users/kzf/project/.temp_code.py\\\", line 1, in <module>\\n import pandas as pd\\nModuleNotFoundError: No module named 'pandas'\\n\", \"stdout\": \"\", \"stderr\": \"Traceback (most recent call last):\\n File \\\"/opt/agent/agents/agents/users/kzf/project/.temp_code.py\\\", line 1, in <module>\\n import pandas as pd\\nModuleNotFoundError: No module named 'pandas'\\n\", \"return_code\": 1, \"command\": \"python3 \\\"/opt/agent/agents/agents/users/kzf/project/.temp_code.py\\\"\", \"code\": \"import pandas as pd\\nimport openpyxl\\n\\n# 尝试读取Excel文件\\nfile_path = \\\"user_upload/xlsx\\\"\\n\\ntry:\\n # 首先尝试用pandas读取\\n df = pd.read_excel(file_path)\\n print(\\\"=== 文件基本信息 ===\\\")\\n print(f\\\"文件名: {file_path}\\\")\\n print(f\\\"工作表形状: {df.shape} (行数, 列数)\\\")\\n print(f\\\"列名: {list(df.columns)}\\\")\\n print(f\\\"数据类型:\\\\n{df.dtypes}\\\")\\n print(\\\"\\\\n=== 前5行数据预览 ===\\\")\\n print(df.head())\\n \\nexcept Exception as e:\\n print(f\\\"用pandas读取失败: {e}\\\")\\n \\n # 尝试用openpyxl读取工作簿信息\\n try:\\n wb = openpyxl.load_workbook(file_path)\\n print(\\\"=== 工作簿信息 ===\\\")\\n print(f\\\"工作表名称: {wb.sheetnames}\\\")\\n \\n # 读取第一个工作表\\n ws = wb.active\\n print(f\\\"活动工作表: {ws.title}\\\")\\n print(f\\\"工作表范围: {ws.max_row} 行 x {ws.max_column} 列\\\")\\n \\n # 显示前5行和前5列的数据\\n print(\\\"\\\\n=== 前5行x前5列数据预览 ===\\\")\\n for row in range(1, min(6, ws.max_row + 1)):\\n row_data = []\\n for col in range(1, min(6, ws.max_column + 1)):\\n cell_value = ws.cell(row=row, column=col).value\\n row_data.append(str(cell_value) if cell_value is not None else \\\"None\\\")\\n print(f\\\"行{row}: {row_data}\\\")\\n \\n except Exception as e2:\\n print(f\\\"用openpyxl读取也失败: {e2}\\\")\"}",
"timestamp": "2025-10-26T19:27:12.454145",
"tool_call_id": "run_python:4",
"name": "run_python"
},
{
"role": "assistant",
"content": "看起来需要安装相关的Python包。让我先安装pandas和openpyxl",
"timestamp": "2025-10-26T19:27:14.351205"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-26T19:27:14.355333",
"tool_calls": [
{
"id": "run_command:5",
"index": 0,
"type": "function",
"function": {
"name": "run_command",
"arguments": "{\"command\": \"pip install pandas openpyxl\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"Looking in indexes: http://mirrors.cloud.aliyuncs.com/pypi/simple/\\nCollecting pandas\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.4 MB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.4/12.4 MB 47.3 MB/s eta 0:00:00\\nCollecting openpyxl\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl (250 kB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 250.9/250.9 kB 24.9 MB/s eta 0:00:00\\nCollecting numpy>=1.26.0 (from pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/f9/58/30a85127bfee6f108282107caf8e06a1f0cc997cb6b52cdee699276fcce4/numpy-2.3.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.6 MB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 16.6/16.6 MB 57.1 MB/s eta 0:00:00\\nCollecting python-dateutil>=2.8.2 (from pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 229.9/229.9 kB 21.0 MB/s eta 0:00:00\\nCollecting pytz>=2020.1 (from pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl (509 kB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 509.2/509.2 kB 38.0 MB/s eta 0:00:00\\nCollecting tzdata>=2022.7 (from pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl (347 kB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 347.8/347.8 kB 33.6 MB/s eta 0:00:00\\nCollecting et-xmlfile (from openpyxl)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl (18 kB)\\nCollecting six>=1.5 (from python-dateutil>=2.8.2->pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl (11 kB)\\nInstalling collected packages: pytz, tzdata, six, numpy, et-xmlfile, python-dateutil, openpyxl, pandas\\nSuccessfully installed et-xmlfile-2.0.0 numpy-2.3.4 openpyxl-3.1.5 pandas-2.3.3 python-dateutil-2.9.0.post0 pytz-2025.2 six-1.17.0 tzdata-2025.2\\n\", \"stdout\": \"Looking in indexes: http://mirrors.cloud.aliyuncs.com/pypi/simple/\\nCollecting pandas\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.4 MB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.4/12.4 MB 47.3 MB/s eta 0:00:00\\nCollecting openpyxl\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl (250 kB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 250.9/250.9 kB 24.9 MB/s eta 0:00:00\\nCollecting numpy>=1.26.0 (from pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/f9/58/30a85127bfee6f108282107caf8e06a1f0cc997cb6b52cdee699276fcce4/numpy-2.3.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.6 MB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 16.6/16.6 MB 57.1 MB/s eta 0:00:00\\nCollecting python-dateutil>=2.8.2 (from pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 229.9/229.9 kB 21.0 MB/s eta 0:00:00\\nCollecting pytz>=2020.1 (from pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl (509 kB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 509.2/509.2 kB 38.0 MB/s eta 0:00:00\\nCollecting tzdata>=2022.7 (from pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl (347 kB)\\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 347.8/347.8 kB 33.6 MB/s eta 0:00:00\\nCollecting et-xmlfile (from openpyxl)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl (18 kB)\\nCollecting six>=1.5 (from python-dateutil>=2.8.2->pandas)\\n Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl (11 kB)\\nInstalling collected packages: pytz, tzdata, six, numpy, et-xmlfile, python-dateutil, openpyxl, pandas\\nSuccessfully installed et-xmlfile-2.0.0 numpy-2.3.4 openpyxl-3.1.5 pandas-2.3.3 python-dateutil-2.9.0.post0 pytz-2025.2 six-1.17.0 tzdata-2025.2\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"pip install pandas openpyxl\"}",
"timestamp": "2025-10-26T19:27:33.791606",
"tool_call_id": "run_command:5",
"name": "run_command"
},
{
"role": "assistant",
"content": "很好现在让我用Python来读取和分析这个Excel文件",
"timestamp": "2025-10-26T19:27:45.657153"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-26T19:27:45.661599",
"tool_calls": [
{
"id": "run_python:6",
"index": 0,
"type": "function",
"function": {
"name": "run_python",
"arguments": "{\"code\": \"import pandas as pd\\nimport openpyxl\\n\\n# 读取Excel文件\\nfile_path = \\\"user_upload/xlsx\\\"\\n\\ntry:\\n # 首先尝试用pandas读取\\n df = pd.read_excel(file_path)\\n print(\\\"=== 文件基本信息 ===\\\")\\n print(f\\\"文件名: {file_path}\\\")\\n print(f\\\"工作表形状: {df.shape} (行数, 列数)\\\")\\n print(f\\\"列名: {list(df.columns)}\\\")\\n print(f\\\"数据类型:\\\\n{df.dtypes}\\\")\\n print(\\\"\\\\n=== 前5行数据预览 ===\\\")\\n print(df.head())\\n \\n print(\\\"\\\\n=== 数据统计信息 ===\\\")\\n print(df.describe())\\n \\nexcept Exception as e:\\n print(f\\\"用pandas读取失败: {e}\\\")\\n \\n # 尝试用openpyxl读取工作簿信息\\n try:\\n wb = openpyxl.load_workbook(file_path)\\n print(\\\"=== 工作簿信息 ===\\\")\\n print(f\\\"工作表名称: {wb.sheetnames}\\\")\\n \\n # 读取第一个工作表\\n ws = wb.active\\n print(f\\\"活动工作表: {ws.title}\\\")\\n print(f\\\"工作表范围: {ws.max_row} 行 x {ws.max_column} 列\\\")\\n \\n # 显示前5行和前5列的数据\\n print(\\\"\\\\n=== 前5行x前5列数据预览 ===\\\")\\n for row in range(1, min(6, ws.max_row + 1)):\\n row_data = []\\n for col in range(1, min(6, ws.max_column + 1)):\\n cell_value = ws.cell(row=row, column=col).value\\n row_data.append(str(cell_value) if cell_value is not None else \\\"None\\\")\\n print(f\\\"行{row}: {row_data}\\\")\\n \\n except Exception as e2:\\n print(f\\\"用openpyxl读取也失败: {e2}\\\")\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"output\": \"=== 文件基本信息 ===\\n文件名: user_upload/xlsx\\n工作表形状: (108, 16) (行数, 列数)\\n列名: ['招考单位', '单位代码', '招考职位', '职位代码', '职位简介', '职位类型', '录用人数', '学历', '学位', '研究生专业\\\\n名称及代码', '本科专业\\\\n名称及代码', '大专专业\\\\n名称及代码', '是否要求2年以上基层工作经历', '是否限应届毕业生报考', '其他要求', '考区']\\n数据类型:\\n招考单位 object\\n单位代码 int64\\n招考职位 object\\n职位代码 int64\\n职位简介 object\\n职位类型 object\\n录用人数 int64\\n学历 object\\n学位 object\\n研究生专业\\\\n名称及代码 object\\n本科专业\\\\n名称及代码 object\\n大专专业\\\\n名称及代码 float64\\n是否要求2年以上基层工作经历 object\\n是否限应届毕业生报考 object\\n其他要求 object\\n考区 object\\ndtype: object\\n\\n=== 前5行数据预览 ===\\n 招考单位 单位代码 招考职位 ... 是否限应届毕业生报考 其他要求 考区\\n0 广东省生态环境厅 1990054 广东省惠州生态环境监测站一级科员 ... 否 NaN 惠州\\n1 广州市越秀区商务局 1010425 对外经济贸易科四级主任科员以下 ... 应届毕业生 NaN 广州\\n2 广州市海珠区城市管理和综合执法局 1010534 环境卫生管理科一级行政执法员 ... 否 NaN 广州\\n3 广州市黄埔区教育局 1010915 综合业务科一级科员 ... 2026届高校毕业生 NaN 广州\\n4 深圳市规划和自然资源局 1020006 南山管理局二级主任科员以下 ... 应届毕业生 NaN 深圳\\n\\n[5 rows x 16 columns]\\n\\n=== 数据统计信息 ===\\n 单位代码 职位代码 录用人数 大专专业\\\\n名称及代码\\ncount 1.080000e+02 1.080000e+02 108.000000 0.0\\nmean 1.110235e+06 1.110236e+13 1.092593 NaN\\nstd 1.070277e+05 1.070277e+12 0.321708 NaN\\nmin 1.010425e+06 1.010425e+13 1.000000 NaN\\n25% 1.050401e+06 1.050402e+13 1.000000 NaN\\n50% 1.090150e+06 1.090151e+13 1.000000 NaN\\n75% 1.170177e+06 1.170177e+13 1.000000 NaN\\nmax 1.990054e+06 1.990054e+13 3.000000 NaN\\n\", \"stdout\": \"=== 文件基本信息 ===\\n文件名: user_upload/xlsx\\n工作表形状: (108, 16) (行数, 列数)\\n列名: ['招考单位', '单位代码', '招考职位', '职位代码', '职位简介', '职位类型', '录用人数', '学历', '学位', '研究生专业\\\\n名称及代码', '本科专业\\\\n名称及代码', '大专专业\\\\n名称及代码', '是否要求2年以上基层工作经历', '是否限应届毕业生报考', '其他要求', '考区']\\n数据类型:\\n招考单位 object\\n单位代码 int64\\n招考职位 object\\n职位代码 int64\\n职位简介 object\\n职位类型 object\\n录用人数 int64\\n学历 object\\n学位 object\\n研究生专业\\\\n名称及代码 object\\n本科专业\\\\n名称及代码 object\\n大专专业\\\\n名称及代码 float64\\n是否要求2年以上基层工作经历 object\\n是否限应届毕业生报考 object\\n其他要求 object\\n考区 object\\ndtype: object\\n\\n=== 前5行数据预览 ===\\n 招考单位 单位代码 招考职位 ... 是否限应届毕业生报考 其他要求 考区\\n0 广东省生态环境厅 1990054 广东省惠州生态环境监测站一级科员 ... 否 NaN 惠州\\n1 广州市越秀区商务局 1010425 对外经济贸易科四级主任科员以下 ... 应届毕业生 NaN 广州\\n2 广州市海珠区城市管理和综合执法局 1010534 环境卫生管理科一级行政执法员 ... 否 NaN 广州\\n3 广州市黄埔区教育局 1010915 综合业务科一级科员 ... 2026届高校毕业生 NaN 广州\\n4 深圳市规划和自然资源局 1020006 南山管理局二级主任科员以下 ... 应届毕业生 NaN 深圳\\n\\n[5 rows x 16 columns]\\n\\n=== 数据统计信息 ===\\n 单位代码 职位代码 录用人数 大专专业\\\\n名称及代码\\ncount 1.080000e+02 1.080000e+02 108.000000 0.0\\nmean 1.110235e+06 1.110236e+13 1.092593 NaN\\nstd 1.070277e+05 1.070277e+12 0.321708 NaN\\nmin 1.010425e+06 1.010425e+13 1.000000 NaN\\n25% 1.050401e+06 1.050402e+13 1.000000 NaN\\n50% 1.090150e+06 1.090151e+13 1.000000 NaN\\n75% 1.170177e+06 1.170177e+13 1.000000 NaN\\nmax 1.990054e+06 1.990054e+13 3.000000 NaN\\n\", \"stderr\": \"\", \"return_code\": 0, \"command\": \"python3 \\\"/opt/agent/agents/agents/users/kzf/project/.temp_code.py\\\"\", \"code\": \"import pandas as pd\\nimport openpyxl\\n\\n# 读取Excel文件\\nfile_path = \\\"user_upload/xlsx\\\"\\n\\ntry:\\n # 首先尝试用pandas读取\\n df = pd.read_excel(file_path)\\n print(\\\"=== 文件基本信息 ===\\\")\\n print(f\\\"文件名: {file_path}\\\")\\n print(f\\\"工作表形状: {df.shape} (行数, 列数)\\\")\\n print(f\\\"列名: {list(df.columns)}\\\")\\n print(f\\\"数据类型:\\\\n{df.dtypes}\\\")\\n print(\\\"\\\\n=== 前5行数据预览 ===\\\")\\n print(df.head())\\n \\n print(\\\"\\\\n=== 数据统计信息 ===\\\")\\n print(df.describe())\\n \\nexcept Exception as e:\\n print(f\\\"用pandas读取失败: {e}\\\")\\n \\n # 尝试用openpyxl读取工作簿信息\\n try:\\n wb = openpyxl.load_workbook(file_path)\\n print(\\\"=== 工作簿信息 ===\\\")\\n print(f\\\"工作表名称: {wb.sheetnames}\\\")\\n \\n # 读取第一个工作表\\n ws = wb.active\\n print(f\\\"活动工作表: {ws.title}\\\")\\n print(f\\\"工作表范围: {ws.max_row} 行 x {ws.max_column} 列\\\")\\n \\n # 显示前5行和前5列的数据\\n print(\\\"\\\\n=== 前5行x前5列数据预览 ===\\\")\\n for row in range(1, min(6, ws.max_row + 1)):\\n row_data = []\\n for col in range(1, min(6, ws.max_column + 1)):\\n cell_value = ws.cell(row=row, column=col).value\\n row_data.append(str(cell_value) if cell_value is not None else \\\"None\\\")\\n print(f\\\"行{row}: {row_data}\\\")\\n \\n except Exception as e2:\\n print(f\\\"用openpyxl读取也失败: {e2}\\\")\"}",
"timestamp": "2025-10-26T19:27:47.474692",
"tool_call_id": "run_python:6",
"name": "run_python"
},
{
"role": "assistant",
"content": "太好了我成功读取了您的Excel文件。这是一个包含**公务员招考信息**的数据表,让我为您总结一下文件内容:\n\n## 📊 文件概览\n\n**文件类型**: Microsoft Excel 2007+ 格式 \n**数据规模**: 108行 × 16列 \n**内容类型**: 公务员招考职位信息\n\n## 📋 数据字段说明\n\n该Excel文件包含以下16个字段\n\n1. **招考单位** - 招聘单位名称\n2. **单位代码** - 单位唯一标识码\n3. **招考职位** - 具体职位名称\n4. **职位代码** - 职位唯一标识码\n5. **职位简介** - 职位描述\n6. **职位类型** - 职位分类\n7. **录用人数** - 招聘人数\n8. **学历** - 学历要求\n9. **学位** - 学位要求\n10. **研究生专业名称及代码** - 研究生专业要求\n11. **本科专业名称及代码** - 本科专业要求\n12. **大专专业名称及代码** - 大专专业要求\n13. **是否要求2年以上基层工作经历** - 基层经验要求\n14. **是否限应届毕业生报考** - 应届限制\n15. **其他要求** - 额外要求\n16. **考区** - 考试地区\n\n## 📈 数据统计\n\n- **总职位数**: 108个\n- **平均录用人数**: 约1.09人/职位\n- **主要考区**: 包括广州、深圳、惠州等地\n\n## 🔍 示例数据\n\n从预览数据可以看到这些职位涵盖\n- 广东省生态环境厅\n- 广州市各区政府部门\n- 深圳市规划和自然资源局\n- 等多个政府机关和事业单位\n\n这个文件看起来是广东省公务员考试的职位表包含了详细的招聘要求和条件。您希望我帮您进行什么具体的分析或处理吗",
"timestamp": "2025-10-26T19:27:57.460040"
}
],
"todo_list": null,
"metadata": {
"project_path": "/opt/agent/agents/agents/users/kzf/project",
"project_relative_path": "users/kzf/project",
"thinking_mode": true,
"total_messages": 24,
"total_tools": 14,
"status": "active"
},
"token_statistics": {
"total_input_tokens": 105119,
"total_output_tokens": 2350,
"updated_at": "2025-10-26T19:28:25.298403"
}
}