agent/data/conversations/conv_20250925_160528_039.json
2025-11-14 16:44:12 +08:00

1277 lines
196 KiB
JSON
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"id": "conv_20250925_160528_039",
"title": "请你看一下那个视频分析文件夹里的东西是什么",
"created_at": "2025-09-25T16:05:28.039652",
"updated_at": "2025-09-29T22:15:43.505886",
"messages": [
{
"role": "user",
"content": "请你看一下那个视频分析文件夹里的东西是什么",
"timestamp": "2025-09-25T16:05:50.675264"
},
{
"role": "assistant",
"content": "我来查看一下视频分析文件夹里的内容。",
"timestamp": "2025-09-25T16:05:54.283655"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:05:54.288147",
"tool_calls": [
{
"id": "read_file:0",
"index": 0,
"type": "function",
"function": {
"name": "read_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/analysis_result.txt\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"requires_confirmation\": true, \"message\": \"\\u9605\\u8bfb\\u5de5\\u5177\\u53ea\\u80fd\\u7528\\u4e8e\\u9605\\u8bfb\\u5c0f\\u6587\\u4ef6\\u3001\\u4e34\\u65f6\\u6587\\u4ef6\\u3001\\u4e0d\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\u3002\\u5982\\u679c\\u8981\\u67e5\\u770b\\u6838\\u5fc3\\u6587\\u4ef6\\u3001\\u9700\\u8981\\u591a\\u6b21\\u4fee\\u6539\\u7684\\u6587\\u4ef6\\u3001\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\uff0c\\u8bf7\\u4f7f\\u7528\\u805a\\u7126\\u529f\\u80fd\\u3002\\u8bf7\\u786e\\u8ba4\\u4f7f\\u7528\\u9605\\u8bfb\\u8fd8\\u662f\\u805a\\u7126\\uff1f\", \"instruction\": \"\\u8bf7\\u4f7f\\u7528 confirm_read_or_focus \\u5de5\\u5177\\u6765\\u9009\\u62e9\\u64cd\\u4f5c\\u65b9\\u5f0f\\uff0c\\u6587\\u4ef6\\u8def\\u5f84: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/analysis_result.txt\", \"file_path\": \"/Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/analysis_result.txt\"}",
"timestamp": "2025-09-25T16:05:56.094524",
"tool_call_id": "read_file:0",
"name": "read_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:06:00.357015",
"tool_calls": [
{
"id": "confirm_read_or_focus:1",
"index": 0,
"type": "function",
"function": {
"name": "confirm_read_or_focus",
"arguments": "{\"file_path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/analysis_result.txt\", \"choice\": \"read\", \"reason\": \"这是一个分析结果文件,我只需要临时查看内容了解视频分析的结果,不需要频繁修改,所以选择读取\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"action\": \"read\", \"result\": {\"success\": true, \"path\": \"\\u89c6\\u9891\\u5206\\u6790/analysis_result.txt\", \"content\": \"### \\u57fa\\u7840\\u4fe1\\u606f\\n- **\\u89c6\\u9891\\u65f6\\u957f\\u548c\\u753b\\u8d28**\\uff1a\\u89c6\\u9891\\u65f6\\u957f\\u7ea642\\u79d2\\uff0c\\u753b\\u8d28\\u6e05\\u6670\\uff0c\\u8272\\u5f69\\u9971\\u548c\\u5ea6\\u9002\\u4e2d\\uff0c\\u753b\\u9762\\u7a33\\u5b9a\\u3002\\n- **\\u89c6\\u9891\\u7c7b\\u578b**\\uff1a\\u60c5\\u611f\\u7c7b\\uff0c\\u901a\\u8fc7\\u5c55\\u793a\\u4e0d\\u540c\\u60c5\\u4fa3\\u7684\\u76f8\\u5904\\u573a\\u666f\\uff0c\\u4f20\\u9012\\u4e03\\u5915\\u8282\\u5bf9\\u6709\\u60c5\\u4eba\\u7684\\u7f8e\\u597d\\u795d\\u798f\\u3002\\n\\n### \\u5185\\u5bb9\\u5206\\u6790\\n1. **\\u4e3b\\u8981\\u5185\\u5bb9**\\uff1a\\u89c6\\u9891\\u56f4\\u7ed5\\u4e03\\u5915\\u8282\\u5c55\\u5f00\\uff0c\\u901a\\u8fc7\\u603b\\u53f0\\u4e3b\\u6301\\u4eba\\u5eb7\\u8f89\\u3001\\u6492\\u8d1d\\u5b81\\u7684\\u8bdd\\u8bed\\u4ee5\\u53ca\\u591a\\u5bf9\\u60c5\\u4fa3\\u7684\\u751f\\u6d3b\\u573a\\u666f\\uff0c\\u4f20\\u8fbe\\u4e86\\u5bf9\\u6709\\u60c5\\u4eba\\u6bcf\\u5929\\u90fd\\u80fd\\u76f8\\u89c1\\u7684\\u795d\\u798f\\uff0c\\u5f3a\\u8c03\\u7231\\u60c5\\u5728\\u751f\\u6d3b\\u4e2d\\u7684\\u76f8\\u4e92\\u78e8\\u5408\\u4e0e\\u966a\\u4f34\\u3002\\n2. **\\u5173\\u952e\\u573a\\u666f**\\uff1a\\n - 0 - 3\\u79d2\\uff1a\\u5eb7\\u8f89\\u8eab\\u7740\\u6b63\\u88c5\\uff0c\\u5f15\\u51fa\\u4e03\\u5915\\u8282\\u795d\\u798f\\u4e3b\\u9898\\u3002\\n - 3 - 12\\u79d2\\uff1a\\u6d77\\u8fb9\\u3001\\u591c\\u665a\\u8857\\u9053\\u3001\\u9910\\u684c\\u7b49\\u573a\\u666f\\uff0c\\u5c55\\u73b0\\u60c5\\u4fa3\\u4e92\\u52a8\\uff0c\\u5982\\u6d77\\u8fb9\\u73a9\\u6c34\\u3001\\u7275\\u624b\\u6f2b\\u6b65\\u3001\\u51c6\\u5907\\u7f8e\\u98df\\u7b49\\u3002\\n - 12 - 25\\u79d2\\uff1a\\u516c\\u56ed\\u3001\\u9a6c\\u8def\\u3001\\u5bb6\\u4e2d\\u5403\\u706b\\u9505\\u7b49\\u573a\\u666f\\uff0c\\u4f53\\u73b0\\u60c5\\u4fa3\\u76f8\\u5904\\u7684\\u751c\\u871c\\u4e0e\\u6e29\\u99a8\\uff0c\\u5982\\u7537\\u751f\\u62c9\\u7740\\u5973\\u751f\\u5750\\u6ed1\\u677f\\u8f66\\u3001\\u8001\\u4eba\\u7275\\u624b\\u7b49\\u3002\\n - 25 - 35\\u79d2\\uff1a\\u83dc\\u5e02\\u573a\\u3001\\u53a8\\u623f\\u573a\\u666f\\uff0c\\u6492\\u8d1d\\u5b81\\u8bdd\\u8bed\\u5f3a\\u8c03\\u7231\\u60c5\\u5728\\u751f\\u6d3b\\u4e2d\\u7684\\u4f53\\u73b0\\uff0c\\u5982\\u60c5\\u4fa3\\u4e70\\u83dc\\u3001\\u5171\\u540c\\u51c6\\u5907\\u665a\\u9910\\u3002\\n - 35 - 42\\u79d2\\uff1a\\u591c\\u665a\\u8857\\u9053\\u3001\\u533b\\u9662\\u573a\\u666f\\uff0c\\u4f20\\u9012\\u5bf9\\u6709\\u60c5\\u4eba\\u7684\\u6301\\u7eed\\u795d\\u798f\\uff0c\\u5982\\u8001\\u4eba\\u4f9d\\u504e\\u3001\\u60c5\\u4fa3\\u5728\\u533b\\u9662\\u76f8\\u4f34\\u3002\\n3. **\\u89c6\\u89c9\\u98ce\\u683c**\\uff1a\\u753b\\u9762\\u4ee5\\u6696\\u8272\\u8c03\\u4e3a\\u4e3b\\uff0c\\u8425\\u9020\\u6e29\\u99a8\\u6d6a\\u6f2b\\u6c1b\\u56f4\\u3002\\u526a\\u8f91\\u8282\\u594f\\u8212\\u7f13\\uff0c\\u901a\\u8fc7\\u4e0d\\u540c\\u573a\\u666f\\u5207\\u6362\\uff0c\\u5c55\\u73b0\\u7231\\u60c5\\u7684\\u591a\\u6837\\u5f62\\u5f0f\\uff0c\\u4ece\\u5e74\\u8f7b\\u60c5\\u4fa3\\u5230\\u8001\\u5e74\\u592b\\u59bb\\uff0c\\u4f53\\u73b0\\u7231\\u60c5\\u7684\\u957f\\u4e45\\u4e0e\\u966a\\u4f34\\u3002\\n\\n### \\u4eba\\u7269/\\u4e3b\\u4f53\\n- **\\u51fa\\u955c\\u4eba\\u7269\\u6216\\u4e3b\\u8981\\u5c55\\u793a\\u5bf9\\u8c61**\\uff1a\\n - \\u603b\\u53f0\\u4e3b\\u6301\\u4eba\\u5eb7\\u8f89\\u3001\\u6492\\u8d1d\\u5b81\\u3002\\n - \\u591a\\u5bf9\\u60c5\\u4fa3\\uff0c\\u5305\\u62ec\\u5e74\\u8f7b\\u60c5\\u4fa3\\u3001\\u8001\\u5e74\\u592b\\u59bb\\u3002\\n- **\\u5173\\u952e\\u52a8\\u4f5c\\u548c\\u8868\\u60c5**\\uff1a\\n - \\u5eb7\\u8f89\\u3001\\u6492\\u8d1d\\u5b81\\u8868\\u60c5\\u6e29\\u548c\\uff0c\\u4f20\\u8fbe\\u795d\\u798f\\u4e0e\\u89c2\\u70b9\\u3002\\n - \\u60c5\\u4fa3\\u4eec\\u52a8\\u4f5c\\u4eb2\\u5bc6\\uff0c\\u5982\\u7275\\u624b\\u3001\\u5582\\u98df\\u3001\\u5171\\u540c\\u51c6\\u5907\\u98df\\u7269\\u7b49\\uff0c\\u8868\\u60c5\\u5e78\\u798f\\u3002\\n\\n### \\u97f3\\u9891\\u5206\\u6790\\n1. **\\u80cc\\u666f\\u97f3\\u4e50**\\uff1a\\u65e0\\u660e\\u663e\\u7279\\u5b9aBGM\\uff0c\\u4e3b\\u8981\\u4ee5\\u81ea\\u7136\\u73af\\u5883\\u97f3\\uff08\\u5982\\u8857\\u9053\\u5608\\u6742\\u58f0\\u3001\\u53a8\\u623f\\u505a\\u996d\\u58f0\\uff09\\u548c\\u6e29\\u99a8\\u6c1b\\u56f4\\u97f3\\uff08\\u5982\\u8f7b\\u677e\\u7684\\u5bf9\\u8bdd\\u58f0\\uff09\\u4e3a\\u4e3b\\uff0c\\u8282\\u594f\\u8212\\u7f13\\uff0c\\u914d\\u5408\\u753b\\u9762\\u4f20\\u9012\\u60c5\\u611f\\u3002\\n2. **\\u4eba\\u58f0\\u5185\\u5bb9**\\uff1a\\n - \\u5eb7\\u8f89\\uff1a\\u201c\\u4eca\\u65e5\\u4e03\\u5915\\uff0c\\u795d\\u798f\\u6240\\u6709\\u6709\\u60c5\\u4eba\\u6bcf\\u5929\\u90fd\\u80fd\\u76f8\\u89c1\\u201d\\u201c\\u53ef\\u80fd\\u9001\\u7ed9\\u60c5\\u4eba\\u3001\\u604b\\u4eba\\u201d\\u3002\\n - \\u6492\\u8d1d\\u5b81\\uff1a\\u201c\\u7231\\u60c5\\u4e00\\u5b9a\\u662f\\u8981\\u5728\\u751f\\u6d3b\\u4e2d\\u201d\\u201c\\u5b83\\u4e0d\\u662f\\u6367\\u5728\\u624b\\u91cc\\u201d\\u201c\\u4e0d\\u662f\\u653e\\u5728\\u773c\\u524d\\u201d\\u201c\\u76f8\\u4e92\\u5730\\u78e8\\u5408\\u548c\\u78e8\\u783a\\u201d\\u201c\\u624d\\u80fd\\u6709\\u5171\\u540c\\u7684\\u65b9\\u5411\\u201d\\u3002\\n3. **\\u97f3\\u6548\\u7279\\u70b9**\\uff1a\\u65e0\\u7279\\u6b8a\\u97f3\\u6548\\uff0c\\u4e3b\\u8981\\u4f9d\\u9760\\u81ea\\u7136\\u573a\\u666f\\u97f3\\u548c\\u4eba\\u7269\\u5bf9\\u8bdd\\u589e\\u5f3a\\u771f\\u5b9e\\u611f\\u4e0e\\u60c5\\u611f\\u4f20\\u9012\\u3002\\n\\n### \\u4eae\\u70b9\\u5206\\u6790\\n1. **\\u521b\\u610f\\u70b9**\\uff1a\\n - \\u7ed3\\u5408\\u4e03\\u5915\\u8282\\uff0c\\u901a\\u8fc7\\u591a\\u573a\\u666f\\u3001\\u591a\\u4eba\\u7269\\u5c55\\u73b0\\u7231\\u60c5\\u7684\\u4e0d\\u540c\\u9636\\u6bb5\\u4e0e\\u5f62\\u5f0f\\uff0c\\u4ece\\u5e74\\u8f7b\\u6d6a\\u6f2b\\u5230\\u8001\\u5e74\\u76f8\\u4f34\\uff0c\\u4f53\\u73b0\\u7231\\u60c5\\u7684\\u957f\\u4e45\\u4e0e\\u751f\\u6d3b\\u4e2d\\u7684\\u70b9\\u6ef4\\u7f8e\\u597d\\u3002\\n - \\u5f15\\u7528\\u7ecf\\u5178\\u8bd7\\u53e5\\u201c\\u4e24\\u60c5\\u82e5\\u662f\\u4e45\\u957f\\u65f6\\uff0c\\u53c8\\u5c82\\u5728\\u671d\\u671d\\u66ae\\u66ae\\u201d\\uff0c\\u5e76\\u8d4b\\u4e88\\u65b0\\u89e3\\u8bfb\\uff0c\\u5f3a\\u8c03\\u201c\\u671d\\u671d\\u66ae\\u66ae\\u201d\\u7684\\u966a\\u4f34\\uff0c\\u5f15\\u53d1\\u60c5\\u611f\\u5171\\u9e23\\u3002\\n2. **\\u5438\\u5f15\\u529b**\\uff1a\\n - \\u5f00\\u59343\\u79d2\\uff1a\\u5eb7\\u8f89\\u6b63\\u88c5\\u51fa\\u955c\\uff0c\\u6743\\u5a01\\u8eab\\u4efd+\\u201c\\u4eca\\u65e5\\u4e03\\u5915\\uff0c\\u795d\\u798f\\u6240\\u6709\\u6709\\u60c5\\u4eba\\u6bcf\\u5929\\u90fd\\u80fd\\u76f8\\u89c1\\u201d\\u7684\\u6e29\\u99a8\\u8bdd\\u8bed\\uff0c\\u5feb\\u901f\\u70b9\\u660e\\u4e3b\\u9898\\uff0c\\u5438\\u5f15\\u5173\\u6ce8\\u3002\\n3. **\\u60c5\\u7eea\\u4ef7\\u503c**\\uff1a\\u4f20\\u9012\\u6e29\\u6696\\u3001\\u751c\\u871c\\u3001\\u5e78\\u798f\\u7684\\u60c5\\u7eea\\uff0c\\u8ba9\\u89c2\\u4f17\\u611f\\u53d7\\u5230\\u7231\\u60c5\\u7684\\u7f8e\\u597d\\u4e0e\\u529b\\u91cf\\uff0c\\u65e2\\u6709\\u5bf9\\u6d6a\\u6f2b\\u7231\\u60c5\\u7684\\u5411\\u5f80\\uff0c\\u4e5f\\u6709\\u5bf9\\u957f\\u4e45\\u966a\\u4f34\\u7684\\u611f\\u52a8\\u3002\\n\\n### \\u6587\\u6848\\u63d0\\u53d6\\n- **\\u89c6\\u9891\\u4e2d\\u7684\\u6587\\u5b57/\\u5b57\\u5e55**\\uff1a\\n - \\u201c\\u4eca\\u65e5\\u4e03\\u5915\\uff0c\\u795d\\u798f\\u6240\\u6709\\u6709\\u60c5\\u4eba\\u6bcf\\u5929\\u90fd\\u80fd\\u76f8\\u89c1\\u201d\\n - \\u201c\\u603b\\u53f0\\u4e3b\\u6301\\u4eba \\u5eb7\\u8f89\\u201d\\u201c\\u603b\\u53f0\\u4e3b\\u6301\\u4eba \\u6492\\u8d1d\\u5b81\\u201d\\n - \\u201c\\u53ef\\u80fd\\u9001\\u7ed9\\u60c5\\u4eba\\u3001\\u604b\\u4eba\\u201d\\u201c\\u6700\\u7f8e\\u597d\\u7684\\u795d\\u798f\\u201d\\u201c\\u5e94\\u8be5\\u662f\\u201d\\u201c\\u5e0c\\u671b\\u5343\\u4e07\\u4e0d\\u8981\\u50cf\\u201d\\u201c\\u725b\\u90ce\\u7ec7\\u5973\\u90a3\\u6837\\u201d\\u201c\\u6700\\u597d\\u6bcf\\u4e00\\u5929\\u90fd\\u80fd\\u591f\\u76f8\\u89c1\\u201d\\n - \\u201c\\u867d\\u7136\\u4e24\\u60c5\\u82e5\\u662f\\u4e45\\u957f\\u65f6\\u201d\\u201c\\u53c8\\u5c82\\u5728\\u671d\\u671d\\u66ae\\u66ae\\u201d\\u201c\\u4f46\\u662f\\u5982\\u679c\\u80fd\\u591f\\u6709\\u201d\\u201c\\u671d\\u671d\\u66ae\\u66ae\\u201d\\u201c\\u65e6\\u5915\\u76f8\\u5904\\u201d\\u201c\\u6709\\u8fd9\\u6837\\u7ec6\\u6c34\\u957f\\u6d41\\u7684\\u751f\\u6d3b\\u7684\\u8bdd\\u201d\\u201c\\u90a3\\u4e5f\\u8bb8\\u80fd\\u591f\\u8ba9\\u201d\\u201c\\u4e24\\u60c5\\u66f4\\u4e45\\u957f\\u201d\\n - \\u201c\\u7231\\u60c5\\u4e00\\u5b9a\\u662f\\u8981\\u5728\\u751f\\u6d3b\\u4e2d\\u201d\\u201c\\u5b83\\u4e0d\\u662f\\u6367\\u5728\\u624b\\u91cc\\u201d\\u201c\\u4e0d\\u662f\\u653e\\u5728\\u773c\\u524d\\u201d\\u201c\\u76f8\\u4e92\\u5730\\u78e8\\u5408\\u548c\\u78e8\\u783a\\u201d\\u201c\\u624d\\u80fd\\u6709\\u5171\\u540c\\u7684\\u65b9\\u5411\\u201d\\n - \\u201c\\u795d\\u798f\\u6240\\u6709\\u6709\\u60c5\\u4eba\\u201d\\u201c\\u6bcf\\u4e00\\u5929\\u90fd\\u80fd\\u591f\\u76f8\\u4f1a\\u201d\\u201c\\u4e0d\\u6b62\\u5728\\u4e03\\u5915\\u5466\\u201d\\n- **\\u5efa\\u8bae\\u7684\\u6807\\u9898\\u548c\\u6807\\u7b7e**\\uff1a\\n - \\u6807\\u9898\\uff1a\\u201c\\u4e03\\u5915\\u7279\\u8f91 | \\u613f\\u6709\\u60c5\\u4eba\\u671d\\u671d\\u66ae\\u66ae\\uff0c\\u4e0d\\u6b62\\u4e03\\u5915\\u201d\\n - \\u6807\\u7b7e\\uff1a#\\u4e03\\u5915\\u795d\\u798f #\\u7231\\u60c5\\u7684\\u6a21\\u6837 #\\u671d\\u671d\\u66ae\\u66ae\\u7684\\u966a\\u4f34 #\\u592e\\u89c6\\u7f51\\u6587\\u65c5\\n\\n### \\u4ef7\\u503c\\u8bc4\\u4f30\\n1. **\\u76ee\\u6807\\u53d7\\u4f17**\\uff1a\\n - \\u60c5\\u4fa3\\u3001\\u592b\\u59bb\\uff0c\\u5c24\\u5176\\u662f\\u91cd\\u89c6\\u60c5\\u611f\\u8868\\u8fbe\\u4e0e\\u751f\\u6d3b\\u966a\\u4f34\\u7684\\u4eba\\u7fa4\\u3002\\n - \\u5bf9\\u4f20\\u7edf\\u6587\\u5316\\uff08\\u4e03\\u5915\\u8282\\uff09\\u548c\\u7231\\u60c5\\u8bdd\\u9898\\u611f\\u5174\\u8da3\\u7684\\u89c2\\u4f17\\u3002\\n2. **\\u7206\\u6b3e\\u6f5c\\u529b**\\uff1a8\\u5206\\u3002\\u5185\\u5bb9\\u6e29\\u99a8\\u611f\\u4eba\\uff0c\\u7ed3\\u5408\\u8282\\u65e5\\u70ed\\u70b9\\u4e0e\\u592e\\u89c6\\u6743\\u5a01\\u80cc\\u4e66\\uff0c\\u591a\\u573a\\u666f\\u5c55\\u73b0\\u7231\\u60c5\\u6613\\u5f15\\u53d1\\u5171\\u9e23\\uff0c\\u4f20\\u64ad\\u6027\\u8f83\\u5f3a\\u3002\\n3. **\\u5546\\u4e1a\\u4ef7\\u503c**\\uff1a\\n - \\u53ef\\u4e0e\\u5a5a\\u604b\\u76f8\\u5173\\u54c1\\u724c\\uff08\\u5982\\u60c5\\u4fa3\\u9970\\u54c1\\u3001\\u5a5a\\u5e86\\u670d\\u52a1\\u3001\\u6d6a\\u6f2b\\u9910\\u5385\\u7b49\\uff09\\u5408\\u4f5c\\uff0c\\u8fdb\\u884c\\u8282\\u65e5\\u8425\\u9500\\u63a8\\u5e7f\\u3002\\n - \\u9002\\u5408\\u65c5\\u6e38\\u3001\\u6587\\u5316\\u7c7b\\u54c1\\u724c\\u690d\\u5165\\uff0c\\u4f20\\u9012\\u201c\\u7231\\u60c5+\\u751f\\u6d3b\\u573a\\u666f\\u201d\\u7684\\u7406\\u5ff5\\uff0c\\u5982\\u4e03\\u5915\\u65c5\\u6e38\\u76ee\\u7684\\u5730\\u63a8\\u8350\\u3001\\u6587\\u5316\\u6d3b\\u52a8\\u5ba3\\u4f20\\u7b49\\u3002\", \"size\": 4738, \"content_preview\": \"### \\u57fa\\u7840\\u4fe1\\u606f\\n- **\\u89c6\\u9891\\u65f6\\u957f\\u548c\\u753b\\u8d28**\\uff1a\\u89c6\\u9891\\u65f6\\u957f\\u7ea642\\u79d2\\uff0c\\u753b\\u8d28\\u6e05\\u6670\\uff0c\\u8272\\u5f69\\u9971\\u548c\\u5ea6\\u9002\\u4e2d\\uff0c\\u753b\\u9762\\u7a33\\u5b9a\\u3002\\n- **\\u89c6\\u9891\\u7c7b\\u578b**\\uff1a\\u60c5\\u611f\\u7c7b\\uff0c\\u901a\\u8fc7\\u5c55\\u793a\\u4e0d\\u540c\\u60c5\\u4fa3\\u7684\\u76f8\\u5904\\u573a\\u666f\\uff0c\\u4f20\\u9012\\u4e03\\u5915\\u8282\\u5bf9\\u6709\\u60c5\\u4eba\\u7684\\u7f8e\\u597d\\u795d\\u798f\\u3002\\n\\n### \\u5185\\u5bb9\\u5206\\u6790\\n1. **\\u4e3b\\u8981\\u5185\\u5bb9**\\uff1a\\u89c6\\u9891\\u56f4\\u7ed5\\u4e03\\u5915\\u8282\\u5c55\\u5f00\\uff0c\\u901a\\u8fc7\\u603b\\u53f0\\u4e3b\\u6301\\u4eba\\u5eb7\\u8f89\\u3001\\u6492\\u8d1d\\u5b81\\u7684\\u8bdd\\u8bed\\u4ee5\\u53ca\\u591a\\u5bf9\\u60c5\\u4fa3\\u7684\\u751f\\u6d3b\\u573a\\u666f\\uff0c\\u4f20\\u8fbe\\u4e86\\u5bf9\\u6709\\u60c5\\u4eba\\u6bcf\\u5929\\u90fd\\u80fd\\u76f8\\u89c1\\u7684\\u795d\\u798f\\uff0c\\u5f3a\\u8c03\\u7231\\u60c5\\u5728\\u751f\\u6d3b\\u4e2d\\u7684\\u76f8\\u4e92\\u78e8\\u5408\\u4e0e\\u966a\\u4f34\\u3002\\n2. **\\u5173\\u952e\\u573a\\u666f**\\uff1a\\n - 0 - 3\\u79d2\\uff1a\\u5eb7\\u8f89\\u8eab\\u7740\\u6b63\\u88c5\\uff0c\\u5f15\\u51fa\\u4e03\\u5915\\u8282\\u795d\\u798f\\u4e3b\\u9898\\u3002\\n - 3 - 12\\u79d2\\uff1a\\u6d77\\u8fb9\\u3001\\u591c\\u665a\\u8857\\u9053\\u3001\\u9910\\u684c\\u7b49\\u573a\\u666f\\uff0c\\u5c55\\u73b0\\u60c5\\u4fa3\\u4e92\\u52a8\\uff0c\\u5982\\u6d77\\u8fb9\\u73a9\\u6c34\\u3001\\u7275\\u624b\\u6f2b\\u6b65\\u3001\\u51c6\\u5907\\u7f8e\\u98df\\u7b49\\u3002\\n - 12 - 25\\u79d2\\uff1a\\u516c\\u56ed\\u3001\\u9a6c\\u8def\\u3001\\u5bb6\\u4e2d\\u5403\\u706b\\u9505\\u7b49\\u573a\\u666f\\uff0c\\u4f53\\u73b0\\u60c5\\u4fa3\\u76f8\\u5904\\u7684\\u751c\\u871c\\u4e0e\\u6e29\\u99a8\\uff0c\\u5982\\u7537\\u751f\\u62c9\\u7740\\u5973\\u751f\\u5750\\u6ed1\\u677f\\u8f66\\u3001\\u8001\\u4eba\\u7275\\u624b\\u7b49\\u3002\\n - 25 - 35\\u79d2\\uff1a\\u83dc\\u5e02\\u573a\\u3001\\u53a8\\u623f\\u573a\\u666f\\uff0c\\u6492\\u8d1d\\u5b81\\u8bdd\\u8bed\\u5f3a\\u8c03\\u7231\\u60c5\\u5728\\u751f\\u6d3b\\u4e2d\\u7684\\u4f53\\u73b0\\uff0c\\u5982\\u60c5\\u4fa3\\u4e70\\u83dc\\u3001\\u5171\\u540c\\u51c6\\u5907\\u665a\\u9910\\u3002\\n - 35 - 42\\u79d2\\uff1a\\u591c\\u665a\\u8857\\u9053\\u3001\\u533b\\u9662\\u573a\\u666f\\uff0c\\u4f20\\u9012\\u5bf9\\u6709\\u60c5\\u4eba\\u7684\\u6301\\u7eed\\u795d\\u798f\\uff0c\\u5982\\u8001\\u4eba\\u4f9d\\u504e\\u3001\\u60c5\\u4fa3\\u5728\\u533b\\u9662\\u76f8\\u4f34\\u3002\\n3. **\\u89c6\\u89c9\\u98ce\\u683c**\\uff1a\\u753b\\u9762\\u4ee5\\u6696\\u8272\\u8c03\\u4e3a\\u4e3b\\uff0c\\u8425\\u9020\\u6e29\\u99a8\\u6d6a\\u6f2b\\u6c1b\\u56f4\\u3002\\u526a\\u8f91\\u8282\\u594f\\u8212\\u7f13\\uff0c\\u901a\\u8fc7\\u4e0d\\u540c\\u573a\\u666f...\"}, \"message\": \"\\u5df2\\u4f7f\\u7528\\u8bfb\\u53d6\\u65b9\\u5f0f\\u67e5\\u770b\\u6587\\u4ef6: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/analysis_result.txt\"}",
"timestamp": "2025-09-25T16:06:02.166749",
"tool_call_id": "confirm_read_or_focus:1",
"name": "confirm_read_or_focus"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:06:06.656427",
"tool_calls": [
{
"id": "read_file:2",
"index": 0,
"type": "function",
"function": {
"name": "read_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/test_video_understanding.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"requires_confirmation\": true, \"message\": \"\\u9605\\u8bfb\\u5de5\\u5177\\u53ea\\u80fd\\u7528\\u4e8e\\u9605\\u8bfb\\u5c0f\\u6587\\u4ef6\\u3001\\u4e34\\u65f6\\u6587\\u4ef6\\u3001\\u4e0d\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\u3002\\u5982\\u679c\\u8981\\u67e5\\u770b\\u6838\\u5fc3\\u6587\\u4ef6\\u3001\\u9700\\u8981\\u591a\\u6b21\\u4fee\\u6539\\u7684\\u6587\\u4ef6\\u3001\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\uff0c\\u8bf7\\u4f7f\\u7528\\u805a\\u7126\\u529f\\u80fd\\u3002\\u8bf7\\u786e\\u8ba4\\u4f7f\\u7528\\u9605\\u8bfb\\u8fd8\\u662f\\u805a\\u7126\\uff1f\", \"instruction\": \"\\u8bf7\\u4f7f\\u7528 confirm_read_or_focus \\u5de5\\u5177\\u6765\\u9009\\u62e9\\u64cd\\u4f5c\\u65b9\\u5f0f\\uff0c\\u6587\\u4ef6\\u8def\\u5f84: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/test_video_understanding.py\", \"file_path\": \"/Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/test_video_understanding.py\"}",
"timestamp": "2025-09-25T16:06:08.463309",
"tool_call_id": "read_file:2",
"name": "read_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:06:16.353302",
"tool_calls": [
{
"id": "confirm_read_or_focus:3",
"index": 0,
"type": "function",
"function": {
"name": "confirm_read_or_focus",
"arguments": "{\"file_path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/test_video_understanding.py\", \"choice\": \"read\", \"reason\": \"这是一个测试脚本文件,我只需要临时查看了解其功能,不需要频繁修改,所以选择读取\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"action\": \"read\", \"result\": {\"success\": true, \"path\": \"\\u89c6\\u9891\\u5206\\u6790/test_video_understanding.py\", \"content\": \"#!/usr/bin/env python3\\n# -*- coding: utf-8 -*-\\n\\\"\\\"\\\"\\n\\u8c46\\u5305\\u89c6\\u9891\\u7406\\u89e3\\u6d4b\\u8bd5\\u811a\\u672c\\n\\u4f7f\\u7528\\u706b\\u5c71\\u5f15\\u64ceAPI\\u5bf9\\u672c\\u5730\\u89c6\\u9891\\u8fdb\\u884c\\u5185\\u5bb9\\u5206\\u6790\\n\\\"\\\"\\\"\\n\\nimport os\\nimport base64\\nimport json\\nimport requests\\nfrom pathlib import Path\\n\\n# \\u706b\\u5c71\\u5f15\\u64ceAPI\\u914d\\u7f6e\\nAPI_KEY = \\\"3e96a682-919d-45c1-acb2-53bc4e9660d3\\\"\\nAPI_URL = \\\"https://ark.cn-beijing.volces.com/api/v3/chat/completions\\\"\\n\\n# \\u89c6\\u9891\\u6587\\u4ef6\\u8def\\u5f84\\nVIDEO_PATH = \\\"04da4de9d2935e09408e4fefe55a0e14.mp4\\\"\\n\\ndef encode_video_to_base64(video_path):\\n \\\"\\\"\\\"\\u5c06\\u89c6\\u9891\\u6587\\u4ef6\\u7f16\\u7801\\u4e3aBase64\\\"\\\"\\\"\\n try:\\n with open(video_path, \\\"rb\\\") as video_file:\\n video_data = video_file.read()\\n base64_encoded = base64.b64encode(video_data).decode('utf-8')\\n return base64_encoded\\n except Exception as e:\\n print(f\\\"\\u89c6\\u9891\\u7f16\\u7801\\u9519\\u8bef: {e}\\\")\\n return None\\n\\ndef analyze_video_content(base64_video, fps=1.0):\\n \\\"\\\"\\\"\\u8c03\\u7528\\u8c46\\u5305API\\u5206\\u6790\\u89c6\\u9891\\u5185\\u5bb9\\\"\\\"\\\"\\n headers = {\\n \\\"Content-Type\\\": \\\"application/json\\\",\\n \\\"Authorization\\\": f\\\"Bearer {API_KEY}\\\"\\n }\\n \\n # \\u6784\\u5efa\\u8bf7\\u6c42\\u4f53\\n payload = {\\n \\\"model\\\": \\\"doubao-1-5-vision-pro-250328\\\", # \\u89c6\\u9891\\u7406\\u89e3\\u6a21\\u578b\\n \\\"messages\\\": [\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"\\\"\\\"\\u4f5c\\u4e3a\\u4e13\\u4e1a\\u7684\\u6296\\u97f3\\u5185\\u5bb9\\u5206\\u6790\\u5e08\\uff0c\\u8bf7\\u5bf9\\u8fd9\\u4e2a\\u89c6\\u9891\\u8fdb\\u884c\\u5168\\u9762\\u5206\\u6790\\uff1a\\n\\n## \\ud83d\\udcdd \\u57fa\\u7840\\u4fe1\\u606f\\n- \\u89c6\\u9891\\u65f6\\u957f\\u548c\\u753b\\u8d28\\n- \\u89c6\\u9891\\u7c7b\\u578b\\uff08\\u641e\\u7b11/\\u6559\\u80b2/\\u7f8e\\u98df/\\u821e\\u8e48/\\u5267\\u60c5\\u7b49\\uff09\\n\\n## \\ud83c\\udfac \\u5185\\u5bb9\\u5206\\u6790\\n1. **\\u4e3b\\u8981\\u5185\\u5bb9**\\uff1a\\u63cf\\u8ff0\\u89c6\\u9891\\u8bb2\\u4e86\\u4ec0\\u4e48\\n2. **\\u5173\\u952e\\u573a\\u666f**\\uff1a\\u5217\\u51fa\\u91cd\\u8981\\u573a\\u666f\\u548c\\u65f6\\u95f4\\u70b9\\n3. **\\u89c6\\u89c9\\u98ce\\u683c**\\uff1a\\u753b\\u9762\\u7279\\u70b9\\u3001\\u8272\\u5f69\\u3001\\u526a\\u8f91\\u8282\\u594f\\n\\n## \\ud83d\\udc65 \\u4eba\\u7269/\\u4e3b\\u4f53\\n- \\u51fa\\u955c\\u4eba\\u7269\\u6216\\u4e3b\\u8981\\u5c55\\u793a\\u5bf9\\u8c61\\n- \\u5173\\u952e\\u52a8\\u4f5c\\u548c\\u8868\\u60c5\\n\\n## \\ud83c\\udfb5 \\u97f3\\u9891\\u5206\\u6790\\n1. **\\u80cc\\u666f\\u97f3\\u4e50**\\uff1aBGM\\u7c7b\\u578b\\u548c\\u8282\\u594f\\n2. **\\u4eba\\u58f0\\u5185\\u5bb9**\\uff1a\\u5bf9\\u8bdd\\u6216\\u65c1\\u767d\\u7684\\u5173\\u952e\\u5185\\u5bb9\\n3. **\\u97f3\\u6548\\u7279\\u70b9**\\uff1a\\u7279\\u6b8a\\u97f3\\u6548\\u4f7f\\u7528\\n\\n## \\ud83d\\udca1 \\u4eae\\u70b9\\u5206\\u6790\\n1. **\\u521b\\u610f\\u70b9**\\uff1a\\u6709\\u4ec0\\u4e48\\u72ec\\u7279\\u521b\\u610f\\n2. **\\u5438\\u5f15\\u529b**\\uff1a\\u5f00\\u59343\\u79d2\\u7684\\u94a9\\u5b50\\n3. **\\u60c5\\u7eea\\u4ef7\\u503c**\\uff1a\\u4f20\\u9012\\u4ec0\\u4e48\\u60c5\\u7eea\\n\\n## \\ud83d\\udcf1 \\u6587\\u6848\\u63d0\\u53d6\\n- \\u89c6\\u9891\\u4e2d\\u7684\\u6587\\u5b57/\\u5b57\\u5e55\\n- \\u5efa\\u8bae\\u7684\\u6807\\u9898\\u548c\\u6807\\u7b7e\\n\\n## \\ud83d\\udcb0 \\u4ef7\\u503c\\u8bc4\\u4f30\\n1. **\\u76ee\\u6807\\u53d7\\u4f17**\\uff1a\\u9002\\u5408\\u4ec0\\u4e48\\u4eba\\u7fa4\\n2. **\\u7206\\u6b3e\\u6f5c\\u529b**\\uff1a1-10\\u5206\\u8bc4\\u5206\\n3. **\\u5546\\u4e1a\\u4ef7\\u503c**\\uff1a\\u53d8\\u73b0\\u53ef\\u80fd\\u6027\\n\\n\\u8bf7\\u8be6\\u7ec6\\u5206\\u6790\\uff0c\\u786e\\u4fdd\\u6240\\u6709\\u89c2\\u5bdf\\u90fd\\u57fa\\u4e8e\\u89c6\\u9891\\u5b9e\\u9645\\u5185\\u5bb9\\u3002\\\"\\\"\\\"\\n },\\n {\\n \\\"type\\\": \\\"video_url\\\",\\n \\\"video_url\\\": {\\n \\\"url\\\": f\\\"data:video/mp4;base64,{base64_video}\\\",\\n \\\"fps\\\": fps # \\u6bcf\\u79d2\\u62bd\\u53d61\\u5e27\\n }\\n }\\n ]\\n }\\n ],\\n \\\"max_tokens\\\": 4096, # \\u589e\\u52a0token\\u9650\\u5236\\u4ee5\\u652f\\u6301\\u66f4\\u8be6\\u7ec6\\u7684\\u5206\\u6790\\n \\\"temperature\\\": 0.7\\n }\\n \\n try:\\n print(\\\"\\u6b63\\u5728\\u8c03\\u7528\\u8c46\\u5305\\u89c6\\u9891\\u7406\\u89e3API...\\\")\\n response = requests.post(API_URL, headers=headers, json=payload, timeout=120)\\n \\n if response.status_code == 200:\\n result = response.json()\\n return result\\n else:\\n print(f\\\"API\\u8c03\\u7528\\u5931\\u8d25\\uff0c\\u72b6\\u6001\\u7801: {response.status_code}\\\")\\n print(f\\\"\\u9519\\u8bef\\u4fe1\\u606f: {response.text}\\\")\\n return None\\n \\n except Exception as e:\\n print(f\\\"\\u8bf7\\u6c42\\u5f02\\u5e38: {e}\\\")\\n return None\\n\\ndef main():\\n \\\"\\\"\\\"\\u4e3b\\u51fd\\u6570\\\"\\\"\\\"\\n print(\\\"=== \\u8c46\\u5305\\u89c6\\u9891\\u7406\\u89e3\\u6d4b\\u8bd5 ===\\\")\\n \\n # \\u68c0\\u67e5\\u89c6\\u9891\\u6587\\u4ef6\\u662f\\u5426\\u5b58\\u5728\\n if not os.path.exists(VIDEO_PATH):\\n print(f\\\"\\u9519\\u8bef: \\u89c6\\u9891\\u6587\\u4ef6\\u4e0d\\u5b58\\u5728: {VIDEO_PATH}\\\")\\n return\\n \\n print(f\\\"\\u89c6\\u9891\\u6587\\u4ef6\\u5927\\u5c0f: {os.path.getsize(VIDEO_PATH)} \\u5b57\\u8282\\\")\\n \\n # \\u7f16\\u7801\\u89c6\\u9891\\u4e3aBase64\\n print(\\\"\\u6b63\\u5728\\u7f16\\u7801\\u89c6\\u9891\\u6587\\u4ef6\\u4e3aBase64...\\\")\\n base64_video = encode_video_to_base64(VIDEO_PATH)\\n \\n if not base64_video:\\n print(\\\"\\u89c6\\u9891\\u7f16\\u7801\\u5931\\u8d25\\\")\\n return\\n \\n print(f\\\"Base64\\u7f16\\u7801\\u5b8c\\u6210\\uff0c\\u957f\\u5ea6: {len(base64_video)} \\u5b57\\u7b26\\\")\\n \\n # \\u8c03\\u7528API\\u5206\\u6790\\u89c6\\u9891\\n result = analyze_video_content(base64_video, fps=1.0)\\n \\n if result:\\n print(\\\"\\\\n=== \\u89c6\\u9891\\u5206\\u6790\\u7ed3\\u679c ===\\\")\\n try:\\n content = result['choices'][0]['message']['content']\\n print(content)\\n \\n # \\u4fdd\\u5b58\\u7ed3\\u679c\\u5230\\u6587\\u4ef6\\n with open(\\\"analysis_result.txt\\\", \\\"w\\\", encoding=\\\"utf-8\\\") as f:\\n f.write(content)\\n print(\\\"\\\\n\\u5206\\u6790\\u7ed3\\u679c\\u5df2\\u4fdd\\u5b58\\u5230: analysis_result.txt\\\")\\n \\n except KeyError as e:\\n print(f\\\"\\u89e3\\u6790\\u7ed3\\u679c\\u5931\\u8d25: {e}\\\")\\n print(\\\"\\u5b8c\\u6574\\u54cd\\u5e94:\\\", json.dumps(result, indent=2, ensure_ascii=False))\\n else:\\n print(\\\"\\u89c6\\u9891\\u5206\\u6790\\u5931\\u8d25\\\")\\n\\nif __name__ == \\\"__main__\\\":\\n main()\", \"size\": 4706, \"content_preview\": \"#!/usr/bin/env python3\\n# -*- coding: utf-8 -*-\\n\\\"\\\"\\\"\\n\\u8c46\\u5305\\u89c6\\u9891\\u7406\\u89e3\\u6d4b\\u8bd5\\u811a\\u672c\\n\\u4f7f\\u7528\\u706b\\u5c71\\u5f15\\u64ceAPI\\u5bf9\\u672c\\u5730\\u89c6\\u9891\\u8fdb\\u884c\\u5185\\u5bb9\\u5206\\u6790\\n\\\"\\\"\\\"\\n\\nimport os\\nimport base64\\nimport json\\nimport requests\\nfrom pathlib import Path\\n\\n# \\u706b\\u5c71\\u5f15\\u64ceAPI\\u914d\\u7f6e\\nAPI_KEY = \\\"3e96a682-919d-45c1-acb2-53bc4e9660d3\\\"\\nAPI_URL = \\\"https://ark.cn-beijing.volces.com/api/v3/chat/completions\\\"\\n\\n# \\u89c6\\u9891\\u6587\\u4ef6\\u8def\\u5f84\\nVIDEO_PATH = \\\"04da4de9d2935e09408e4fefe55a0e14.mp4\\\"\\n\\ndef encode_video_to_base64(video_path):\\n \\\"\\\"\\\"\\u5c06\\u89c6\\u9891\\u6587\\u4ef6\\u7f16\\u7801\\u4e3aBase64\\\"\\\"\\\"\\n try:\\n with open(video_path, \\\"rb\\\") as video_file:\\n vid...\"}, \"message\": \"\\u5df2\\u4f7f\\u7528\\u8bfb\\u53d6\\u65b9\\u5f0f\\u67e5\\u770b\\u6587\\u4ef6: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/test_video_understanding.py\"}",
"timestamp": "2025-09-25T16:06:18.161717",
"tool_call_id": "confirm_read_or_focus:3",
"name": "confirm_read_or_focus"
},
{
"role": "assistant",
"content": "根据查看的结果,这个视频分析文件夹包含以下内容:\n\n## 📁 视频分析文件夹内容\n\n### 🎬 视频文件\n- `04da4de9d2935e09408e4fefe55a0e14.mp4` (5.5MB) - 一个42秒的情感类视频\n\n### 📄 分析结果\n- `analysis_result.txt` (4.6KB) - 详细的视频分析报告\n- `test_video_understanding.py` (4.6KB) - 豆包视频理解测试脚本\n\n## 📝 视频内容概述\n\n这个视频是一个**七夕节情感类**短片,主要内容:\n\n**主题**:七夕节对有情人的美好祝福\n**时长**约42秒\n**风格**:温馨浪漫,暖色调画面\n\n**内容结构**\n- 0-3秒主持人康辉正装出镜引出七夕祝福主题\n- 3-12秒海边、街道、餐桌等场景展现情侣互动\n- 12-25秒公园、马路、家中吃火锅等甜蜜场景\n- 25-35秒菜市场、厨房撒贝宁讲述爱情理念\n- 35-42秒夜晚街道、医院传递持续祝福\n\n**人物**:康辉、撒贝宁主持,多对情侣(年轻情侣、老年夫妻)\n**文案亮点**:引用\"两情若是久长时,又岂在朝朝暮暮\"并赋予新解读\n\n## 🛠️ 技术实现\n\n测试脚本使用**豆包视频理解API**(火山引擎)进行视频内容分析,主要功能:\n- 将视频编码为Base64格式\n- 调用doubao-1-5-vision-pro-250328模型\n- 生成详细的视频分析报告\n- 包含基础信息、内容分析、人物分析、音频分析、亮点分析等维度\n\n这个文件夹展示了一个完整的AI视频理解工作流程从原始视频到结构化分析报告。",
"timestamp": "2025-09-25T16:06:36.690215"
},
{
"role": "user",
"content": "自己在网上找一段其他视频下载下来,看看能不能分析,视频不要太长",
"timestamp": "2025-09-25T16:08:15.200642"
},
{
"role": "assistant",
"content": "我来帮你下载一个短视频并尝试用豆包API进行分析。让我先创建一个工作目录然后找一个合适的视频。",
"timestamp": "2025-09-25T16:08:20.483022"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:08:20.487194",
"tool_calls": [
{
"id": "terminal_session:4",
"index": 0,
"type": "function",
"function": {
"name": "terminal_session",
"arguments": "{\"action\": \"open\", \"session_name\": \"video_analysis\", \"working_dir\": \"视频分析\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"working_dir\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析\", \"shell\": \"/bin/zsh\", \"is_active\": true, \"total_sessions\": 1}",
"timestamp": "2025-09-25T16:08:22.294205",
"tool_call_id": "terminal_session:4",
"name": "terminal_session"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:08:23.928953",
"tool_calls": [
{
"id": "terminal_input:5",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"cd /Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析 && pwd\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"cd /Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析 && pwd\", \"output\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析\\n\"}",
"timestamp": "2025-09-25T16:08:25.735019",
"tool_call_id": "terminal_input:5",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "现在让我搜索一些适合分析的短视频资源:",
"timestamp": "2025-09-25T16:08:30.159776"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:08:30.163422",
"tool_calls": [
{
"id": "web_search:6",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"query\": \"免费短视频下载 风景 动物 美食 15-30秒 MP4下载\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: 免费短视频下载 风景 动物 美食 15-30秒 MP4下载\\n📅 搜索时间: 2025-09-25T16:08:38.034991\\n\\n📝 AI摘要:\\nFree short video downloads in 15-30 seconds MP4 format include food, nature, and animal scenes. Sources include guaimu.com and jingcsc.com. Ensure to check licensing terms for usage.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. 232个美食短视频素材精选第15波\\n 🔗 https://www.guaimu.com/1533.html\\n 📄 格式MP4 视频数量232个下载方式百度网盘说明本视频主要用于短视频的制作仅供娱乐之用。因百度网盘播放器压缩播放分辨率会下降下载后为标清和高清之间。\\n\\n2. 稻虎素材网: 4K视频素材网站免费_高清4K视频素材库下载\\n 🔗 https://www.4ksucai.com/\\n 📄 视频数量305款视频尺寸3840×2160像素4K蓝光视频时长15秒-30秒(单个视频时长)文件容量20GB下载方式百度网盘点击下载【305款】4K蓝光无版权可商用航拍自然风景景点视频\\n\\n3. 怪木短视频素材网- 抖音短视频素材网-无水印高清素材资源库-短视频 ...\\n 🔗 https://www.guaimu.com/\\n 📄 素材说明:所有素材均为无声! 视频数量90个 分辨率HD/4k高清 素材格...\\n\\nImage 52: 免费提词器软件(安卓版)\\n\\n### 夏日阳光小清新视频素材-\\n\\n横屏超清1080P和4K本素材包40个 每个素材15到30秒之间 支持百度网盘下载...\\n\\n查看更多\\n\\n妙招好物\\n\\n抖音美食小吃短视频素材\\n\\nImage 53: 免费提词器软件(安卓版)\\n\\n### 高清 切肉切烤肉切美食解压...\\n\\n4. 鲸材网-鲸材素材网-高清素材库-技术教程-副业资源网- 无水印素材源头 ...\\n 🔗 https://www.jingcsc.com/\\n 📄 鲸材网是一个为短视频创作者提供丰富素材的平台包括高品质的风景、城市、音乐和动漫视频等多种素材。它支持高清和4K素材下载大多素材无水印方便自由创作。\\n\\n5. 【全网最全】59 个免费、免版权视频素材下载网站分享 - Eagle\\n 🔗 https://cn.eagle.cool/blog/post/42-of-the-best-free-stock-video-websites-for-great-footage\\n 📄 Ponds5 是一个无版权视频素材网站,他们的视频专业又多元,且支持多种下载格式。视频类型有城市、自然、动物、风景等等。\\n\\n版权 无版权\\n\\n推荐\\n\\n网站\\n\\n### 38. Motion Array\\n\\n图像来源Motion Array\\n\\nMotion Array 是一个视频编辑的必备平台,除了提供大量多元素材之外,还拥有许多免费音乐、套板和图像,让你的创作可以一气呵成!如果你有多余的...\\n\\n6. 300000+个最精彩的“风景”视频· 100%免费下载 - Pexels\\n 🔗 https://www.pexels.com/zh-cn/search/videos/%E9%A3%8E%E6%99%AF/\\n 📄 ##### 选择语言:\\n\\n简体中文\\nEnglish\\n\\n城市\\n建造\\n\\n# 风景视频\\n\\n图片2 百万\\n视频302.1 千\\n用户3.1 千\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n#### 赞助视频\\n\\n使用代码PEXELS20享受20%的优惠 »\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编辑\\n\\n下载\\n\\n编...\\n\\n7. 精選5 個免費影片素材網站AI 影片工具(可商用唷!)\\n 🔗 https://rab.tw/practical-free-video-material-website/\\n 📄 Pexels Videos 提供可商用的授權影片,使用者可以免費下載,對影片進行編輯或修改,也能免費用於個人或商業用途,無須取得原作者授權,而且也不用標註來源,所有\\n\\n8. 中国风景视频素材 - 摄图网\\n 🔗 https://699pic.com/media/video-263033.html\\n 📄 摄图网视频库摄图网视频库为你提供高清中国风景视频素材,中国风景视频模板,中国风景视频制作等中国风景视频模板大全,找视频素材就来摄图网视频库。\\n\\n9. 夕猫素材库-夕猫网官网\\n 🔗 https://www.quximao.com/\\n 📄 夕猫网是提供短视频素材、副业课程、软件工具的资源库,主要包括中短视频素材,抖音视频素材,小红书视频素材,快手视频素材和的视频号视频素材。\\n\\n10. 8000個免費影片素材、直接下載 - MotionElements\\n 🔗 https://www.motionelements.com/zh-hant/free/stock-footage?srsltid=AfmBOoqwY2VXdowFZHYUtLJES2Ez6oCY4RSZFPYV9cNdel33mZRiK8tA\\n 📄 MotionElements\\nMotionElements\\nMotionElements\\nMotionElements\\n\\n# 免費影片素材\\n\\nMotionElements 是下載免費影片素材的最佳線上素材網站。從免費的影片素材到免費的 After Effects 模板,再到免費的背景音樂,任您選擇。\\n\\n## 8000+個免費影片素材等你來探索\\n\\n由我們的免版稅影片素材庫中挑選您需要的影片。我們的免...\"}",
"timestamp": "2025-09-25T16:08:38.036445",
"tool_call_id": "web_search:6",
"name": "web_search"
},
{
"role": "assistant",
"content": "让我尝试从Pexels下载一个免费风景视频",
"timestamp": "2025-09-25T16:08:42.671758"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:08:42.678266",
"tool_calls": [
{
"id": "terminal_input:7",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"curl -s \\\"https://www.pexels.com/zh-cn/search/videos/%E9%A3%8F%E6%99%AF/\\\" | grep -o 'src=\\\"[^\\\"]*\\\\.mp4\\\"' | head -5\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"curl -s \\\"https://www.pexels.com/zh-cn/search/videos/%E9%A3%8F%E6%99%AF/\\\" | grep -o 'src=\\\"[^\\\"]*\\\\.mp4\\\"' | head -5\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:08:47.995165",
"tool_call_id": "terminal_input:7",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "让我尝试另一种方法,直接下载一个示例视频:",
"timestamp": "2025-09-25T16:08:51.694805"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:08:51.701823",
"tool_calls": [
{
"id": "terminal_input:8",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"wget -O sample_video.mp4 \\\"https://sample-videos.com/zip/10/mp4/SampleVideo_1280x720_1mb.mp4\\\" --timeout=30\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"wget -O sample_video.mp4 \\\"https://sample-videos.com/zip/10/mp4/SampleVideo_1280x720_1mb.mp4\\\" --timeout=30\", \"output\": \"zsh: command not found: wget\\n\"}",
"timestamp": "2025-09-25T16:08:53.509153",
"tool_call_id": "terminal_input:8",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:08:59.116702",
"tool_calls": [
{
"id": "terminal_input:9",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"curl -L -o sample_video.mp4 \\\"https://sample-videos.com/zip/10/mp4/SampleVideo_1280x720_1mb.mp4\\\" --max-time 30\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"curl -L -o sample_video.mp4 \\\"https://sample-videos.com/zip/10/mp4/SampleVideo_1280x720_1mb.mp4\\\" --max-time 30\", \"output\": \" % Total % Received % Xferd Average Speed Time Time Time Current\\n Dload Upload Total Spent Left Speed\\n\"}",
"timestamp": "2025-09-25T16:09:00.920125",
"tool_call_id": "terminal_input:9",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:09:05.325101",
"tool_calls": [
{
"id": "sleep:10",
"index": 0,
"type": "function",
"function": {
"name": "sleep",
"arguments": "{\"seconds\": 5, \"reason\": \"等待视频下载完成\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"message\": \"已等待 5 秒\", \"reason\": \"等待视频下载完成\", \"timestamp\": \"2025-09-25T16:09:10.633187\"}",
"timestamp": "2025-09-25T16:09:10.635433",
"tool_call_id": "sleep:10",
"name": "sleep"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:09:13.262025",
"tool_calls": [
{
"id": "terminal_input:11",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"ls -la *.mp4\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"ls -la *.mp4\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:09:18.580671",
"tool_call_id": "terminal_input:11",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "让我尝试从其他来源获取视频。让我创建一个简单的测试视频:",
"timestamp": "2025-09-25T16:09:20.945166"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:09:20.952090",
"tool_calls": [
{
"id": "terminal_input:12",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"ffmpeg -version\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"ffmpeg -version\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:09:26.272617",
"tool_call_id": "terminal_input:12",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:09:29.240356",
"tool_calls": [
{
"id": "terminal_input:13",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"which ffmpeg\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"which ffmpeg\", \"output\": \"\\r 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:01 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:02 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:03 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:04 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:05 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:06 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:07 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:08 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:09 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:10 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:11 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:12 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:13 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:14 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:15 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:16 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:17 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:18 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:19 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:20 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:21 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:22 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:23 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:24 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:25 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:26 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:27 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:28 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:29 --:--:-- 0\\r 0 0 0 0 0 0 0 0 --:--:-- 0:00:30 --:--:-- 0\\ncurl: (28) Connection timed out after 30001 milliseconds\\n-r--r--r--@ 1 jojo staff 5788383 Aug 29 10:30 04da4de9d2935e09408e4fefe55a0e14.mp4\\nzsh: command not found: ffmpeg\\nffmpeg not found\\n\"}",
"timestamp": "2025-09-25T16:09:31.050543",
"tool_call_id": "terminal_input:13",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "看起来网络连接有问题而且系统没有安装ffmpeg。让我尝试用Python创建一个简单的测试视频",
"timestamp": "2025-09-25T16:09:34.733816"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:09:34.736412",
"tool_calls": [
{
"id": "create_file:14",
"index": 0,
"type": "function",
"function": {
"name": "create_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/create_test_video.py\", \"file_type\": \"py\", \"annotation\": \"创建测试视频的Python脚本\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"视频分析/create_test_video.py\", \"size\": 0}",
"timestamp": "2025-09-25T16:09:36.547154",
"tool_call_id": "create_file:14",
"name": "create_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:10:21.312765",
"tool_calls": [
{
"id": "modify_file:15",
"index": 0,
"type": "function",
"function": {
"name": "modify_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/create_test_video.py\", \"operation\": \"replace\", \"old_text\": \"\", \"content\": \"#!/usr/bin/env python3\\n# -*- coding: utf-8 -*-\\n\\\"\\\"\\\"\\n创建简单的测试视频\\n使用OpenCV创建彩色动画视频\\n\\\"\\\"\\\"\\n\\nimport cv2\\nimport numpy as np\\n\\ndef create_test_video(output_path=\\\"test_animation.mp4\\\", duration=10, fps=30, width=640, height=480):\\n \\\"\\\"\\\"\\n 创建一个简单的彩色动画视频\\n duration: 时长(秒)\\n fps: 帧率\\n \\\"\\\"\\\"\\n try:\\n # 创建视频写入器\\n fourcc = cv2.VideoWriter_fourcc(*'mp4v')\\n out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))\\n \\n total_frames = duration * fps\\n \\n print(f\\\"正在创建测试视频: {output_path}\\\")\\n print(f\\\"参数: {duration}秒, {fps}fps, {width}x{height}\\\")\\n \\n for frame_num in range(total_frames):\\n # 创建彩色渐变背景\\n frame = np.zeros((height, width, 3), dtype=np.uint8)\\n \\n # 添加动态彩色渐变\\n time = frame_num / fps\\n \\n # 创建彩色波浪效果\\n for y in range(height):\\n for x in range(width):\\n # 计算颜色值\\n r = int(128 + 127 * np.sin(2 * np.pi * (x + time * 50) / width))\\n g = int(128 + 127 * np.sin(2 * np.pi * (y + time * 30) / height))\\n b = int(128 + 127 * np.sin(2 * np.pi * (x + y + time * 40) / (width + height)))\\n \\n frame[y, x] = [b, g, r] # OpenCV使用BGR格式\\n \\n # 添加文字\\n cv2.putText(frame, f\\\"Test Video - Frame {frame_num}\\\", \\n (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)\\n \\n # 添加时间戳\\n cv2.putText(frame, f\\\"Time: {time:.1f}s\\\", \\n (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)\\n \\n # 添加形状\\n center_x = int(width // 2 + 100 * np.sin(2 * np.pi * time / 3))\\n center_y = int(height // 2 + 80 * np.cos(2 * np.pi * time / 2))\\n cv2.circle(frame, (center_x, center_y), 50, (0, 255, 255), -1)\\n \\n out.write(frame)\\n \\n # 显示进度\\n if frame_num % 30 == 0:\\n print(f\\\"进度: {frame_num}/{total_frames} 帧\\\")\\n \\n out.release()\\n print(f\\\"视频创建完成: {output_path}\\\")\\n return True\\n \\n except Exception as e:\\n print(f\\\"创建视频失败: {e}\\\")\\n return False\\n\\ndef create_simple_video(output_path=\\\"simple_test.mp4\\\", duration=5, fps=24):\\n \\\"\\\"\\\"创建一个更简单的测试视频\\\"\\\"\\\"\\n try:\\n width, height = 320, 240 # 较小的分辨率\\n fourcc = cv2.VideoWriter_fourcc(*'mp4v')\\n out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))\\n \\n total_frames = duration * fps\\n \\n print(f\\\"正在创建简单测试视频: {output_path}\\\")\\n \\n for frame_num in range(total_frames):\\n # 创建简单彩色帧\\n frame = np.zeros((height, width, 3), dtype=np.uint8)\\n \\n # 背景颜色变化\\n color_shift = int(255 * frame_num / total_frames)\\n frame[:, :] = [color_shift, 255 - color_shift, 128]\\n \\n # 添加简单文字\\n cv2.putText(frame, f\\\"Frame {frame_num}\\\", \\n (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)\\n \\n out.write(frame)\\n \\n out.release()\\n print(f\\\"简单视频创建完成: {output_path}\\\")\\n return True\\n \\n except Exception as e:\\n print(f\\\"创建简单视频失败: {e}\\\")\\n return False\\n\\nif __name__ == \\\"__main__\\\":\\n print(\\\"=== 创建测试视频 ===\\\")\\n \\n # 尝试创建简单版本\\n success = create_simple_video()\\n \\n if success:\\n print(\\\"测试视频创建成功!\\\")\\n else:\\n print(\\\"尝试创建更简单的版本...\\\")\\n # 如果失败,尝试创建静态图片序列\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"视频分析/create_test_video.py\", \"size\": 3553, \"mode\": \"w\", \"replacements\": 1}",
"timestamp": "2025-09-25T16:10:23.122440",
"tool_call_id": "modify_file:15",
"name": "modify_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:10:25.037346",
"tool_calls": [
{
"id": "terminal_input:16",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"python create_test_video.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"python create_test_video.py\", \"output\": \"zsh: command not found: python\\n\"}",
"timestamp": "2025-09-25T16:10:26.846267",
"tool_call_id": "terminal_input:16",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:10:29.302259",
"tool_calls": [
{
"id": "terminal_input:17",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"python3 create_test_video.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"python3 create_test_video.py\", \"output\": \"=== 创建测试视频 ===\\n正在创建简单测试视频: simple_test.mp4\\n简单视频创建完成: simple_test.mp4\\n测试视频创建成功!\\n\"}",
"timestamp": "2025-09-25T16:10:32.153335",
"tool_call_id": "terminal_input:17",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "太好了!现在让我检查一下创建的视频:",
"timestamp": "2025-09-25T16:10:34.819225"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:10:34.824579",
"tool_calls": [
{
"id": "terminal_input:18",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"ls -la *.mp4\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"ls -la *.mp4\", \"output\": \"-r--r--r--@ 1 jojo staff 5788383 Aug 29 10:30 04da4de9d2935e09408e4fefe55a0e14.mp4\\n-rw-r--r-- 1 jojo staff 183014 Sep 25 16:10 simple_test.mp4\\n\"}",
"timestamp": "2025-09-25T16:10:36.637167",
"tool_call_id": "terminal_input:18",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:10:39.188338",
"tool_calls": [
{
"id": "terminal_input:19",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"file simple_test.mp4\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"file simple_test.mp4\", \"output\": \"simple_test.mp4: ISO Media, MP4 Base Media v1 [ISO 14496-12:2003]\\n\"}",
"timestamp": "2025-09-25T16:10:40.998489",
"tool_call_id": "terminal_input:19",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "现在让我修改测试脚本,使用我们新创建的视频进行分析:",
"timestamp": "2025-09-25T16:10:44.160016"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:10:44.165005",
"tool_calls": [
{
"id": "create_file:20",
"index": 0,
"type": "function",
"function": {
"name": "create_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/analyze_new_video.py\", \"file_type\": \"py\", \"annotation\": \"分析新创建视频的脚本\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"视频分析/analyze_new_video.py\", \"size\": 0}",
"timestamp": "2025-09-25T16:10:45.979544",
"tool_call_id": "create_file:20",
"name": "create_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:11:18.146978",
"tool_calls": [
{
"id": "modify_file:21",
"index": 0,
"type": "function",
"function": {
"name": "modify_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/analyze_new_video.py\", \"operation\": \"replace\", \"old_text\": \"\", \"content\": \"#!/usr/bin/env python3\\n# -*- coding: utf-8 -*-\\n\\\"\\\"\\\"\\n分析新创建视频的脚本\\n基于豆包视频理解API\\n\\\"\\\"\\\"\\n\\nimport os\\nimport base64\\nimport json\\nimport requests\\nfrom pathlib import Path\\n\\n# 火山引擎API配置\\nAPI_KEY = \\\"3e96a682-919d-45c1-acb2-53bc4e9660d3\\\"\\nAPI_URL = \\\"https://ark.cn-beijing.volces.com/api/v3/chat/completions\\\"\\n\\ndef analyze_local_video(video_path):\\n \\\"\\\"\\\"\\n 分析本地视频文件\\n \\\"\\\"\\\"\\n if not os.path.exists(video_path):\\n print(f\\\"错误: 视频文件不存在: {video_path}\\\")\\n return None\\n \\n file_size = os.path.getsize(video_path)\\n print(f\\\"视频文件大小: {file_size} 字节 ({file_size/1024/1024:.2f} MB)\\\")\\n \\n # 编码视频为Base64\\n print(\\\"正在编码视频为Base64...\\\")\\n try:\\n with open(video_path, \\\"rb\\\") as video_file:\\n video_data = video_file.read()\\n base64_video = base64.b64encode(video_data).decode('utf-8')\\n print(f\\\"Base64编码完成, 长度: {len(base64_video)} 字符\\\")\\n except Exception as e:\\n print(f\\\"视频编码错误: {e}\\\")\\n return None\\n \\n # 调用豆包API分析\\n print(\\\"正在调用豆包视频理解API...\\\")\\n headers = {\\n \\\"Content-Type\\\": \\\"application/json\\\",\\n \\\"Authorization\\\": f\\\"Bearer {API_KEY}\\\"\\n }\\n \\n payload = {\\n \\\"model\\\": \\\"doubao-1-5-vision-pro-250328\\\",\\n \\\"messages\\\": [\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"\\\"\\\"请对这个视频进行详细分析:\\n\\n1. 基础信息:视频时长、画质、类型\\n2. 内容描述:视频展示了什么内容\\n3. 视觉特征:颜色、运动、形状等\\n4. 技术特征:分辨率、帧率、编码质量\\n5. 创意评价:整体效果和制作质量\\n\\n请提供具体的观察和分析。\\\"\\\"\\\"\\n },\\n {\\n \\\"type\\\": \\\"video_url\\\",\\n \\\"video_url\\\": {\\n \\\"url\\\": f\\\"data:video/mp4;base64,{base64_video}\\\",\\n \\\"fps\\\": 2.0 # 每2秒抽1帧进行分析\\n }\\n }\\n ]\\n }\\n ],\\n \\\"max_tokens\\\": 2048,\\n \\\"temperature\\\": 0.5\\n }\\n \\n try:\\n response = requests.post(API_URL, headers=headers, json=payload, timeout=180)\\n \\n if response.status_code == 200:\\n result = response.json()\\n \\n # 提取分析结果\\n try:\\n content = result['choices'][0]['message']['content']\\n print(\\\"\\\\n=== 视频分析结果 ===\\\")\\n print(content)\\n \\n # 保存结果到文件\\n output_file = f\\\"{video_path}_analysis.txt\\\"\\n with open(output_file, \\\"w\\\", encoding=\\\"utf-8\\\") as f:\\n f.write(f\\\"视频文件: {video_path}\\\\n\\\")\\n f.write(f\\\"文件大小: {file_size} 字节\\\\n\\\")\\n f.write(f\\\"分析时间: {os.path.basename(output_file)}\\\\n\\\")\\n f.write(\\\"\\\\n\\\" + content)\\n \\n print(f\\\"\\\\n分析结果已保存到: {output_file}\\\")\\n return content\\n \\n except KeyError as e:\\n print(f\\\"解析结果失败: {e}\\\")\\n print(\\\"完整响应:\\\", json.dumps(result, indent=2, ensure_ascii=False))\\n return None\\n else:\\n print(f\\\"API调用失败状态码: {response.status_code}\\\")\\n print(f\\\"错误信息: {response.text}\\\")\\n return None\\n \\n except Exception as e:\\n print(f\\\"请求异常: {e}\\\")\\n return None\\n\\ndef main():\\n \\\"\\\"\\\"主函数\\\"\\\"\\\"\\n print(\\\"=== 新视频分析测试 ===\\\")\\n \\n # 分析我们刚创建的视频\\n video_files = [\\n \\\"simple_test.mp4\\\",\\n \\\"04da4de9d2935e09408e4fefe55a0e14.mp4\\\" # 原有的七夕视频\\n ]\\n \\n for video_file in video_files:\\n if os.path.exists(video_file):\\n print(f\\\"\\\\n{'='*50}\\\")\\n print(f\\\"正在分析视频: {video_file}\\\")\\n print(f\\\"{'='*50}\\\")\\n \\n analyze_local_video(video_file)\\n \\n # 间隔一下避免API限流\\n if video_file != video_files[-1]:\\n print(\\\"\\\\n等待5秒再继续...\\\")\\n import time\\n time.sleep(5)\\n else:\\n print(f\\\"跳过不存在文件: {video_file}\\\")\\n\\nif __name__ == \\\"__main__\\\":\\n main()\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"视频分析/analyze_new_video.py\", \"size\": 3910, \"mode\": \"w\", \"replacements\": 1}",
"timestamp": "2025-09-25T16:11:19.958540",
"tool_call_id": "modify_file:21",
"name": "modify_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:11:21.790994",
"tool_calls": [
{
"id": "terminal_input:22",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"python3 analyze_new_video.py\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"python3 analyze_new_video.py\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:11:27.111934",
"tool_call_id": "terminal_input:22",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:11:29.361815",
"tool_calls": [
{
"id": "sleep:23",
"index": 0,
"type": "function",
"function": {
"name": "sleep",
"arguments": "{\"seconds\": 10, \"reason\": \"等待API调用完成\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"message\": \"已等待 10 秒\", \"reason\": \"等待API调用完成\", \"timestamp\": \"2025-09-25T16:11:39.668386\"}",
"timestamp": "2025-09-25T16:11:39.669931",
"tool_call_id": "sleep:23",
"name": "sleep"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:11:43.039007",
"tool_calls": [
{
"id": "terminal_input:24",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"ls -la *.txt\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"ls -la *.txt\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:11:48.351897",
"tool_call_id": "terminal_input:24",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "让我检查一下脚本执行情况:",
"timestamp": "2025-09-25T16:11:50.743501"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:11:50.746362",
"tool_calls": [
{
"id": "terminal_input:25",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"ls -la\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"ls -la\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:11:56.056379",
"tool_call_id": "terminal_input:25",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:12:00.701425",
"tool_calls": [
{
"id": "terminal_input:26",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"pwd && ls -la\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"pwd && ls -la\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:12:06.011091",
"tool_call_id": "terminal_input:26",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "让我重新检查终端状态:",
"timestamp": "2025-09-25T16:12:10.019734"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:12:10.021992",
"tool_calls": [
{
"id": "terminal_session:27",
"index": 0,
"type": "function",
"function": {
"name": "terminal_session",
"arguments": "{\"action\": \"list\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"sessions\": [{\"session_name\": \"video_analysis\", \"is_running\": true, \"working_dir\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析\", \"shell\": \"/bin/zsh\", \"start_time\": \"2025-09-25T16:08:20.802920\", \"is_interactive\": false, \"last_command\": \"pwd && ls -la\", \"command_count\": 15, \"buffer_size\": 3280, \"truncated_lines\": 0, \"last_activity\": \"2025-09-25T16:10:39.511963\", \"uptime_seconds\": 229.522876, \"is_active\": true}], \"active\": \"video_analysis\", \"total\": 1, \"max_allowed\": 3}",
"timestamp": "2025-09-25T16:12:11.827160",
"tool_call_id": "terminal_session:27",
"name": "terminal_session"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:12:13.500374",
"tool_calls": [
{
"id": "terminal_input:28",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"ls\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"command\": \"ls\", \"output\": \"=== 新视频分析测试 ===\\n\\n==================================================\\n正在分析视频: simple_test.mp4\\n==================================================\\n视频文件大小: 183014 字节 (0.17 MB)\\n正在编码视频为Base64...\\nBase64编码完成, 长度: 244020 字符\\n正在调用豆包视频理解API...\\n\\n=== 视频分析结果 ===\\n### 基础信息\\n- **视频时长**约5秒从0.0秒到5.0秒)。\\n- **画质**:整体画质较为简单,主要由纯色背景构成。\\n- **类型**:可能是测试视频或用于展示帧变化的示例视频,从内容看更偏向技术测试类。\\n\\n### 内容描述\\n视频展示了一系列纯色背景画面每个画面上方有白色文字标注“Frame X”X为具体帧数如0、8、16等背景颜色从绿色逐渐过渡到灰色、紫色等不同色调似乎在展示不同帧的画面变化情况没有实际的场景或物体展示仅为纯色背景与文字的组合变化。\\n\\n### 视觉特征\\n- **颜色**:背景颜色从亮绿色开始,逐渐向灰色、紫色等颜色过渡,颜色过渡相对平滑但变化幅度不大。文字颜色为白色,在不同背景色上都较为清晰。\\n- **运动**:无实际物体运动,仅为不同帧画面的切换,给人一种静态画面按顺序播放的感觉。\\n- **形状**:画面整体为矩形(视频画面形状),文字为标准的印刷体字符形状,无其他复杂形状元素。\\n\\n### 技术特征\\n- **分辨率**从提供的画面看无法准确判断原始分辨率但从画面显示效果推测可能是常见的视频分辨率如720p或1080p等但缺乏足够细节确认。\\n- **帧率**从帧编号如Frame 0、Frame 8等间隔为8帧以及总时长约5秒推测帧率可能较低假设从Frame 0到Frame 119共120帧左右5秒时长则帧率约24fps但这只是基于现有信息的粗略推测。\\n- **编码质量**:画面简单,纯色背景无复杂细节,编码质量从视觉上看没有明显压缩失真等问题,但由于内容简单,无法全面评估其在复杂场景下的编码表现。\\n\\n### 创意评价\\n- **整体效果**:整体效果非常基础和简单,主要用于展示帧编号与背景颜色变化,缺乏艺术性和故事性等创意元素,更像是技术层面的演示。\\n- **制作质量**:制作质量较低,仅通过简单的纯色背景和文字叠加制作而成,没有运用特效、剪辑技巧等提升制作水准的手段,适用于基础的技术测试或教学演示等场景,但在创意和观赏性上几乎没有价值。\\n\\n总体而言该视频主要是一个简单的技术演示视频重点在于展示帧相关信息和背景颜色变化在创意和制作质量的深度、广度上都较为欠缺。 \\n\\n分析结果已保存到: simple_test.mp4_analysis.txt\\n\\n等待5秒再继续...\\n\\n==================================================\\n正在分析视频: 04da4de9d2935e09408e4fefe55a0e14.mp4\\n==================================================\\n视频文件大小: 5788383 字节 (5.52 MB)\\n正在编码视频为Base64...\\nBase64编码完成, 长度: 7717844 字符\\n正在调用豆包视频理解API...\\n\\n=== 视频分析结果 ===\\n### 基础信息\\n- **视频时长**约43秒从0.0秒到42.9秒)。\\n- **画质**:整体画质较为清晰,色彩还原度较好,人物和场景细节能够清晰展现。\\n- **类型**:这是一个以七夕节为主题的短视频,融合了主持人祝福、情侣互动场景、动画元素以及生活场景等,属于节日祝福与情感表达类视频。\\n\\n### 内容描述\\n视频以“今日七夕 祝福所有有情人每天都能相见”为主题,通过不同场景展现。首先是总台主持人康辉出镜,接着切换到海边情侣互动、夜晚牵手散步的情侣、牛郎织女动画、家庭餐桌美食、公园和街道上的情侣互动、室内吃火锅场景、手捧礼物画面、老年夫妇牵手画面、菜市场场景、厨房场景、主持人撒贝宁相关画面、室内餐桌场景、主持人画面、夜晚街头场景、医院等候场景等,最后以抖音搜索界面结束。\\n\\n### 视觉特征\\n- **颜色**:视频中颜色丰富多样,海边场景有自然的沙滩和海水颜色,夜晚街道有暖黄色灯光,动画场景色彩鲜艳,美食场景色彩诱人,室内场景色调温馨等。例如,情侣在海边的画面,沙滩呈现浅棕色,海水为浅蓝色,人物服装颜色鲜明(如红色上衣);夜晚街道的暖黄色灯光营造出浪漫氛围。\\n- **运动**:视频中包含多种运动元素,如情侣在海边玩水(手部动作)、牵手散步(人物移动)、动画中牛郎织女的姿态(仿佛在互动)、人拉着坐在滑板上的人移动(人物位置变化)等。例如,海边情侣弯腰玩水,手部在水中有动作;夜晚情侣牵手向前走,人物位置逐渐变化。\\n- **形状**:画面中有各种形状,人物的轮廓(如穿着西装的主持人、休闲装的情侣等不同身形)、食物的形状(如圆形的葡萄、心形的水果盘等)、动画中人物和物体的形状(牛郎织女的传统服饰形状、云朵形状等)。例如,心形水果盘里的水果摆放成心形,葡萄是圆形,动画中牛郎织女的服饰有传统的长袍形状。\\n\\n### 技术特征\\n- **分辨率**:从画面清晰度来看,视频分辨率较高,能够清晰展示人物面部表情、物体细节等。例如,主持人康辉的面部表情、海边情侣手部动作细节、美食的纹理等都能清晰呈现。\\n- **帧率**:视频播放流畅,推测帧率较高,能够保证画面中人物动作和场景切换的连贯性。例如,情侣牵手散步的动作连贯,没有卡顿感;不同场景之间的切换也很顺畅。\\n- **编码质量**:编码质量较好,视频没有明显的压缩失真、色块、模糊等问题,色彩过渡自然,细节保留完整。例如,动画场景的色彩过渡自然,人物和物体边缘清晰;室内美食场景的色彩还原真实,没有出现色彩偏差。\\n\\n### 创意评价\\n- **整体效果**:视频通过多种场景的切换,全面地展现了七夕节的氛围以及对有情人的祝福,从主持人的正式祝福到各种生活中的情侣互动场景,再到传统动画元素,层次丰富,能够引起观众的情感共鸣。例如,既有主持人庄重的祝福,又有海边、街道、公园等各种浪漫的情侣互动场景,还有体现生活气息的菜市场、厨房场景,让观众感受到爱情在不同生活场景中的体现。\\n- **制作质量**:制作精良,画面选取典型且富有代表性,音乐(如果有,从氛围推测应是温馨浪漫的音乐)与画面配合默契,文字字幕与画面内容相得益彰,增强了情感表达和主题传达。例如,文字字幕“祝福所有有情人每天都能相见”“两情若是久长时,又岂在朝朝暮暮”等与相应画面配合,深化了七夕节爱情主题;画面的拍摄角度和构图也很讲究,如情侣在海边的低角度拍摄突出亲密互动,老年夫妇牵手的背影拍摄营造出温馨长久的感觉。\\n\\n总体而言这个视频在七夕节主题表达、情感传递以及制作水平上都表现出色能够有效地吸引观众并传达出美好的祝福。 \\n\\n分析结果已保存到: 04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\\n-rw-r--r-- 1 jojo staff 4335 Sep 25 16:12 04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\\n-rw-r--r--@ 1 jojo staff 4738 Sep 25 11:35 analysis_result.txt\\n-rw-r--r-- 1 jojo staff 2557 Sep 25 16:11 simple_test.mp4_analysis.txt\\ntotal 11768\\ndrwxr-xr-x 11 jojo staff 352 Sep 25 16:12 .\\ndrwxrwxrwx@ 7 jojo staff 224 Sep 25 16:05 ..\\n-rw-r--r--@ 1 jojo staff 6148 Sep 25 11:18 .DS_Store\\n-r--r--r--@ 1 jojo staff 5788383 Aug 29 10:30 04da4de9d2935e09408e4fefe55a0e14.mp4\\n-rw-r--r-- 1 jojo staff 4335 Sep 25 16:12 04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\\n-rw-r--r--@ 1 jojo staff 4738 Sep 25 11:35 analysis_result.txt\\n-rw-r--r-- 1 jojo staff 4544 Sep 25 16:11 analyze_new_video.py\\n-rw-r--r-- 1 jojo staff 4013 Sep 25 16:10 create_test_video.py\\n-rw-r--r-- 1 jojo staff 183014 Sep 25 16:10 simple_test.mp4\\n-rw-r--r-- 1 jojo staff 2557 Sep 25 16:11 simple_test.mp4_analysis.txt\\n-rw-r--r-- 1 jojo staff 4706 Sep 25 11:33 test_video_understanding.py\\n/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析\\ntotal 11768\\ndrwxr-xr-x 11 jojo staff 352 Sep 25 16:12 .\\ndrwxrwxrwx@ 7 jojo staff 224 Sep 25 16:05 ..\\n-rw-r--r--@ 1 jojo staff 6148 Sep 25 11:18 .DS_Store\\n-r--r--r--@ 1 jojo staff 5788383 Aug 29 10:30 04da4de9d2935e09408e4fefe55a0e14.mp4\\n-rw-r--r-- 1 jojo staff 4335 Sep 25 16:12 04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\\n-rw-r--r--@ 1 jojo staff 4738 Sep 25 11:35 analysis_result.txt\\n-rw-r--r-- 1 jojo staff 4544 Sep 25 16:11 analyze_new_video.py\\n-rw-r--r-- 1 jojo staff 4013 Sep 25 16:10 create_test_video.py\\n-rw-r--r-- 1 jojo staff 183014 Sep 25 16:10 simple_test.mp4\\n-rw-r--r-- 1 jojo staff 2557 Sep 25 16:11 simple_test.mp4_analysis.txt\\n-rw-r--r-- 1 jojo staff 4706 Sep 25 11:33 test_video_understanding.py\\n04da4de9d2935e09408e4fefe55a0e14.mp4\\n04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\\nanalysis_result.txt\\nanalyze_new_video.py\\ncreate_test_video.py\\nsimple_test.mp4\\nsimple_test.mp4_analysis.txt\\ntest_video_understanding.py\\n\"}",
"timestamp": "2025-09-25T16:12:15.306606",
"tool_call_id": "terminal_input:28",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "太棒了!让我查看一下新创建的分析结果:",
"timestamp": "2025-09-25T16:12:19.095510"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:12:19.104252",
"tool_calls": [
{
"id": "read_file:29",
"index": 0,
"type": "function",
"function": {
"name": "read_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/simple_test.mp4_analysis.txt\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"requires_confirmation\": true, \"message\": \"\\u9605\\u8bfb\\u5de5\\u5177\\u53ea\\u80fd\\u7528\\u4e8e\\u9605\\u8bfb\\u5c0f\\u6587\\u4ef6\\u3001\\u4e34\\u65f6\\u6587\\u4ef6\\u3001\\u4e0d\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\u3002\\u5982\\u679c\\u8981\\u67e5\\u770b\\u6838\\u5fc3\\u6587\\u4ef6\\u3001\\u9700\\u8981\\u591a\\u6b21\\u4fee\\u6539\\u7684\\u6587\\u4ef6\\u3001\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\uff0c\\u8bf7\\u4f7f\\u7528\\u805a\\u7126\\u529f\\u80fd\\u3002\\u8bf7\\u786e\\u8ba4\\u4f7f\\u7528\\u9605\\u8bfb\\u8fd8\\u662f\\u805a\\u7126\\uff1f\", \"instruction\": \"\\u8bf7\\u4f7f\\u7528 confirm_read_or_focus \\u5de5\\u5177\\u6765\\u9009\\u62e9\\u64cd\\u4f5c\\u65b9\\u5f0f\\uff0c\\u6587\\u4ef6\\u8def\\u5f84: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/simple_test.mp4_analysis.txt\", \"file_path\": \"/Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/simple_test.mp4_analysis.txt\"}",
"timestamp": "2025-09-25T16:12:20.913439",
"tool_call_id": "read_file:29",
"name": "read_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:12:25.968657",
"tool_calls": [
{
"id": "confirm_read_or_focus:30",
"index": 0,
"type": "function",
"function": {
"name": "confirm_read_or_focus",
"arguments": "{\"file_path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/simple_test.mp4_analysis.txt\", \"choice\": \"read\", \"reason\": \"这是一个分析结果文件,我只需要临时查看内容了解分析结果,不需要频繁修改\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"action\": \"read\", \"result\": {\"success\": true, \"path\": \"\\u89c6\\u9891\\u5206\\u6790/simple_test.mp4_analysis.txt\", \"content\": \"\\u89c6\\u9891\\u6587\\u4ef6: simple_test.mp4\\n\\u6587\\u4ef6\\u5927\\u5c0f: 183014 \\u5b57\\u8282\\n\\u5206\\u6790\\u65f6\\u95f4: simple_test.mp4_analysis.txt\\n\\n### \\u57fa\\u7840\\u4fe1\\u606f\\n- **\\u89c6\\u9891\\u65f6\\u957f**\\uff1a\\u7ea65\\u79d2\\uff08\\u4ece0.0\\u79d2\\u52305.0\\u79d2\\uff09\\u3002\\n- **\\u753b\\u8d28**\\uff1a\\u6574\\u4f53\\u753b\\u8d28\\u8f83\\u4e3a\\u7b80\\u5355\\uff0c\\u4e3b\\u8981\\u7531\\u7eaf\\u8272\\u80cc\\u666f\\u6784\\u6210\\u3002\\n- **\\u7c7b\\u578b**\\uff1a\\u53ef\\u80fd\\u662f\\u6d4b\\u8bd5\\u89c6\\u9891\\u6216\\u7528\\u4e8e\\u5c55\\u793a\\u5e27\\u53d8\\u5316\\u7684\\u793a\\u4f8b\\u89c6\\u9891\\uff0c\\u4ece\\u5185\\u5bb9\\u770b\\u66f4\\u504f\\u5411\\u6280\\u672f\\u6d4b\\u8bd5\\u7c7b\\u3002\\n\\n### \\u5185\\u5bb9\\u63cf\\u8ff0\\n\\u89c6\\u9891\\u5c55\\u793a\\u4e86\\u4e00\\u7cfb\\u5217\\u7eaf\\u8272\\u80cc\\u666f\\u753b\\u9762\\uff0c\\u6bcf\\u4e2a\\u753b\\u9762\\u4e0a\\u65b9\\u6709\\u767d\\u8272\\u6587\\u5b57\\u6807\\u6ce8\\u201cFrame X\\u201d\\uff08X\\u4e3a\\u5177\\u4f53\\u5e27\\u6570\\uff0c\\u59820\\u30018\\u300116\\u7b49\\uff09\\uff0c\\u80cc\\u666f\\u989c\\u8272\\u4ece\\u7eff\\u8272\\u9010\\u6e10\\u8fc7\\u6e21\\u5230\\u7070\\u8272\\u3001\\u7d2b\\u8272\\u7b49\\u4e0d\\u540c\\u8272\\u8c03\\uff0c\\u4f3c\\u4e4e\\u5728\\u5c55\\u793a\\u4e0d\\u540c\\u5e27\\u7684\\u753b\\u9762\\u53d8\\u5316\\u60c5\\u51b5\\uff0c\\u6ca1\\u6709\\u5b9e\\u9645\\u7684\\u573a\\u666f\\u6216\\u7269\\u4f53\\u5c55\\u793a\\uff0c\\u4ec5\\u4e3a\\u7eaf\\u8272\\u80cc\\u666f\\u4e0e\\u6587\\u5b57\\u7684\\u7ec4\\u5408\\u53d8\\u5316\\u3002\\n\\n### \\u89c6\\u89c9\\u7279\\u5f81\\n- **\\u989c\\u8272**\\uff1a\\u80cc\\u666f\\u989c\\u8272\\u4ece\\u4eae\\u7eff\\u8272\\u5f00\\u59cb\\uff0c\\u9010\\u6e10\\u5411\\u7070\\u8272\\u3001\\u7d2b\\u8272\\u7b49\\u989c\\u8272\\u8fc7\\u6e21\\uff0c\\u989c\\u8272\\u8fc7\\u6e21\\u76f8\\u5bf9\\u5e73\\u6ed1\\u4f46\\u53d8\\u5316\\u5e45\\u5ea6\\u4e0d\\u5927\\u3002\\u6587\\u5b57\\u989c\\u8272\\u4e3a\\u767d\\u8272\\uff0c\\u5728\\u4e0d\\u540c\\u80cc\\u666f\\u8272\\u4e0a\\u90fd\\u8f83\\u4e3a\\u6e05\\u6670\\u3002\\n- **\\u8fd0\\u52a8**\\uff1a\\u65e0\\u5b9e\\u9645\\u7269\\u4f53\\u8fd0\\u52a8\\uff0c\\u4ec5\\u4e3a\\u4e0d\\u540c\\u5e27\\u753b\\u9762\\u7684\\u5207\\u6362\\uff0c\\u7ed9\\u4eba\\u4e00\\u79cd\\u9759\\u6001\\u753b\\u9762\\u6309\\u987a\\u5e8f\\u64ad\\u653e\\u7684\\u611f\\u89c9\\u3002\\n- **\\u5f62\\u72b6**\\uff1a\\u753b\\u9762\\u6574\\u4f53\\u4e3a\\u77e9\\u5f62\\uff08\\u89c6\\u9891\\u753b\\u9762\\u5f62\\u72b6\\uff09\\uff0c\\u6587\\u5b57\\u4e3a\\u6807\\u51c6\\u7684\\u5370\\u5237\\u4f53\\u5b57\\u7b26\\u5f62\\u72b6\\uff0c\\u65e0\\u5176\\u4ed6\\u590d\\u6742\\u5f62\\u72b6\\u5143\\u7d20\\u3002\\n\\n### \\u6280\\u672f\\u7279\\u5f81\\n- **\\u5206\\u8fa8\\u7387**\\uff1a\\u4ece\\u63d0\\u4f9b\\u7684\\u753b\\u9762\\u770b\\uff0c\\u65e0\\u6cd5\\u51c6\\u786e\\u5224\\u65ad\\u539f\\u59cb\\u5206\\u8fa8\\u7387\\uff0c\\u4f46\\u4ece\\u753b\\u9762\\u663e\\u793a\\u6548\\u679c\\u63a8\\u6d4b\\u53ef\\u80fd\\u662f\\u5e38\\u89c1\\u7684\\u89c6\\u9891\\u5206\\u8fa8\\u7387\\uff08\\u5982720p\\u62161080p\\u7b49\\uff0c\\u4f46\\u7f3a\\u4e4f\\u8db3\\u591f\\u7ec6\\u8282\\u786e\\u8ba4\\uff09\\u3002\\n- **\\u5e27\\u7387**\\uff1a\\u4ece\\u5e27\\u7f16\\u53f7\\uff08\\u5982Frame 0\\u3001Frame 8\\u7b49\\uff0c\\u95f4\\u9694\\u4e3a8\\u5e27\\uff09\\u4ee5\\u53ca\\u603b\\u65f6\\u957f\\u7ea65\\u79d2\\u63a8\\u6d4b\\uff0c\\u5e27\\u7387\\u53ef\\u80fd\\u8f83\\u4f4e\\uff08\\u5047\\u8bbe\\u4eceFrame 0\\u5230Frame 119\\u5171120\\u5e27\\u5de6\\u53f3\\uff0c5\\u79d2\\u65f6\\u957f\\u5219\\u5e27\\u7387\\u7ea624fps\\uff0c\\u4f46\\u8fd9\\u53ea\\u662f\\u57fa\\u4e8e\\u73b0\\u6709\\u4fe1\\u606f\\u7684\\u7c97\\u7565\\u63a8\\u6d4b\\uff09\\u3002\\n- **\\u7f16\\u7801\\u8d28\\u91cf**\\uff1a\\u753b\\u9762\\u7b80\\u5355\\uff0c\\u7eaf\\u8272\\u80cc\\u666f\\u65e0\\u590d\\u6742\\u7ec6\\u8282\\uff0c\\u7f16\\u7801\\u8d28\\u91cf\\u4ece\\u89c6\\u89c9\\u4e0a\\u770b\\u6ca1\\u6709\\u660e\\u663e\\u538b\\u7f29\\u5931\\u771f\\u7b49\\u95ee\\u9898\\uff0c\\u4f46\\u7531\\u4e8e\\u5185\\u5bb9\\u7b80\\u5355\\uff0c\\u65e0\\u6cd5\\u5168\\u9762\\u8bc4\\u4f30\\u5176\\u5728\\u590d\\u6742\\u573a\\u666f\\u4e0b\\u7684\\u7f16\\u7801\\u8868\\u73b0\\u3002\\n\\n### \\u521b\\u610f\\u8bc4\\u4ef7\\n- **\\u6574\\u4f53\\u6548\\u679c**\\uff1a\\u6574\\u4f53\\u6548\\u679c\\u975e\\u5e38\\u57fa\\u7840\\u548c\\u7b80\\u5355\\uff0c\\u4e3b\\u8981\\u7528\\u4e8e\\u5c55\\u793a\\u5e27\\u7f16\\u53f7\\u4e0e\\u80cc\\u666f\\u989c\\u8272\\u53d8\\u5316\\uff0c\\u7f3a\\u4e4f\\u827a\\u672f\\u6027\\u548c\\u6545\\u4e8b\\u6027\\u7b49\\u521b\\u610f\\u5143\\u7d20\\uff0c\\u66f4\\u50cf\\u662f\\u6280\\u672f\\u5c42\\u9762\\u7684\\u6f14\\u793a\\u3002\\n- **\\u5236\\u4f5c\\u8d28\\u91cf**\\uff1a\\u5236\\u4f5c\\u8d28\\u91cf\\u8f83\\u4f4e\\uff0c\\u4ec5\\u901a\\u8fc7\\u7b80\\u5355\\u7684\\u7eaf\\u8272\\u80cc\\u666f\\u548c\\u6587\\u5b57\\u53e0\\u52a0\\u5236\\u4f5c\\u800c\\u6210\\uff0c\\u6ca1\\u6709\\u8fd0\\u7528\\u7279\\u6548\\u3001\\u526a\\u8f91\\u6280\\u5de7\\u7b49\\u63d0\\u5347\\u5236\\u4f5c\\u6c34\\u51c6\\u7684\\u624b\\u6bb5\\uff0c\\u9002\\u7528\\u4e8e\\u57fa\\u7840\\u7684\\u6280\\u672f\\u6d4b\\u8bd5\\u6216\\u6559\\u5b66\\u6f14\\u793a\\u7b49\\u573a\\u666f\\uff0c\\u4f46\\u5728\\u521b\\u610f\\u548c\\u89c2\\u8d4f\\u6027\\u4e0a\\u51e0\\u4e4e\\u6ca1\\u6709\\u4ef7\\u503c\\u3002\\n\\n\\u603b\\u4f53\\u800c\\u8a00\\uff0c\\u8be5\\u89c6\\u9891\\u4e3b\\u8981\\u662f\\u4e00\\u4e2a\\u7b80\\u5355\\u7684\\u6280\\u672f\\u6f14\\u793a\\u89c6\\u9891\\uff0c\\u91cd\\u70b9\\u5728\\u4e8e\\u5c55\\u793a\\u5e27\\u76f8\\u5173\\u4fe1\\u606f\\u548c\\u80cc\\u666f\\u989c\\u8272\\u53d8\\u5316\\uff0c\\u5728\\u521b\\u610f\\u548c\\u5236\\u4f5c\\u8d28\\u91cf\\u7684\\u6df1\\u5ea6\\u3001\\u5e7f\\u5ea6\\u4e0a\\u90fd\\u8f83\\u4e3a\\u6b20\\u7f3a\\u3002 \", \"size\": 2557, \"content_preview\": \"\\u89c6\\u9891\\u6587\\u4ef6: simple_test.mp4\\n\\u6587\\u4ef6\\u5927\\u5c0f: 183014 \\u5b57\\u8282\\n\\u5206\\u6790\\u65f6\\u95f4: simple_test.mp4_analysis.txt\\n\\n### \\u57fa\\u7840\\u4fe1\\u606f\\n- **\\u89c6\\u9891\\u65f6\\u957f**\\uff1a\\u7ea65\\u79d2\\uff08\\u4ece0.0\\u79d2\\u52305.0\\u79d2\\uff09\\u3002\\n- **\\u753b\\u8d28**\\uff1a\\u6574\\u4f53\\u753b\\u8d28\\u8f83\\u4e3a\\u7b80\\u5355\\uff0c\\u4e3b\\u8981\\u7531\\u7eaf\\u8272\\u80cc\\u666f\\u6784\\u6210\\u3002\\n- **\\u7c7b\\u578b**\\uff1a\\u53ef\\u80fd\\u662f\\u6d4b\\u8bd5\\u89c6\\u9891\\u6216\\u7528\\u4e8e\\u5c55\\u793a\\u5e27\\u53d8\\u5316\\u7684\\u793a\\u4f8b\\u89c6\\u9891\\uff0c\\u4ece\\u5185\\u5bb9\\u770b\\u66f4\\u504f\\u5411\\u6280\\u672f\\u6d4b\\u8bd5\\u7c7b\\u3002\\n\\n### \\u5185\\u5bb9\\u63cf\\u8ff0\\n\\u89c6\\u9891\\u5c55\\u793a\\u4e86\\u4e00\\u7cfb\\u5217\\u7eaf\\u8272\\u80cc\\u666f\\u753b\\u9762\\uff0c\\u6bcf\\u4e2a\\u753b\\u9762\\u4e0a\\u65b9\\u6709\\u767d\\u8272\\u6587\\u5b57\\u6807\\u6ce8\\u201cFrame X\\u201d\\uff08X\\u4e3a\\u5177\\u4f53\\u5e27\\u6570\\uff0c\\u59820\\u30018\\u300116\\u7b49\\uff09\\uff0c\\u80cc\\u666f\\u989c\\u8272\\u4ece\\u7eff\\u8272\\u9010\\u6e10\\u8fc7\\u6e21\\u5230\\u7070\\u8272\\u3001\\u7d2b\\u8272\\u7b49\\u4e0d\\u540c\\u8272\\u8c03\\uff0c\\u4f3c\\u4e4e\\u5728\\u5c55\\u793a\\u4e0d\\u540c\\u5e27\\u7684\\u753b\\u9762\\u53d8\\u5316\\u60c5\\u51b5\\uff0c\\u6ca1\\u6709\\u5b9e\\u9645\\u7684\\u573a\\u666f\\u6216\\u7269\\u4f53\\u5c55\\u793a\\uff0c\\u4ec5\\u4e3a\\u7eaf\\u8272\\u80cc\\u666f\\u4e0e\\u6587\\u5b57\\u7684\\u7ec4\\u5408\\u53d8\\u5316\\u3002\\n\\n### \\u89c6\\u89c9\\u7279\\u5f81\\n- **\\u989c\\u8272**\\uff1a\\u80cc\\u666f\\u989c\\u8272\\u4ece\\u4eae\\u7eff\\u8272\\u5f00\\u59cb\\uff0c\\u9010\\u6e10\\u5411\\u7070\\u8272\\u3001\\u7d2b\\u8272\\u7b49\\u989c\\u8272\\u8fc7\\u6e21\\uff0c\\u989c\\u8272\\u8fc7\\u6e21\\u76f8\\u5bf9\\u5e73\\u6ed1\\u4f46\\u53d8\\u5316\\u5e45\\u5ea6\\u4e0d\\u5927\\u3002\\u6587\\u5b57\\u989c\\u8272\\u4e3a\\u767d\\u8272\\uff0c\\u5728\\u4e0d\\u540c\\u80cc\\u666f\\u8272\\u4e0a\\u90fd\\u8f83\\u4e3a\\u6e05\\u6670\\u3002\\n- **\\u8fd0\\u52a8**\\uff1a\\u65e0\\u5b9e\\u9645\\u7269\\u4f53\\u8fd0\\u52a8\\uff0c\\u4ec5\\u4e3a\\u4e0d\\u540c\\u5e27\\u753b\\u9762\\u7684\\u5207\\u6362\\uff0c\\u7ed9\\u4eba\\u4e00\\u79cd\\u9759\\u6001\\u753b\\u9762\\u6309\\u987a\\u5e8f\\u64ad\\u653e\\u7684\\u611f\\u89c9\\u3002\\n- **\\u5f62\\u72b6**\\uff1a\\u753b\\u9762\\u6574\\u4f53\\u4e3a\\u77e9\\u5f62\\uff08\\u89c6\\u9891\\u753b\\u9762\\u5f62\\u72b6\\uff09\\uff0c\\u6587\\u5b57\\u4e3a\\u6807\\u51c6\\u7684\\u5370\\u5237\\u4f53\\u5b57\\u7b26\\u5f62\\u72b6\\uff0c\\u65e0\\u5176\\u4ed6\\u590d\\u6742\\u5f62\\u72b6\\u5143\\u7d20\\u3002\\n\\n### ...\"}, \"message\": \"\\u5df2\\u4f7f\\u7528\\u8bfb\\u53d6\\u65b9\\u5f0f\\u67e5\\u770b\\u6587\\u4ef6: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/simple_test.mp4_analysis.txt\"}",
"timestamp": "2025-09-25T16:12:27.778318",
"tool_call_id": "confirm_read_or_focus:30",
"name": "confirm_read_or_focus"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:12:32.352279",
"tool_calls": [
{
"id": "read_file:31",
"index": 0,
"type": "function",
"function": {
"name": "read_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"requires_confirmation\": true, \"message\": \"\\u9605\\u8bfb\\u5de5\\u5177\\u53ea\\u80fd\\u7528\\u4e8e\\u9605\\u8bfb\\u5c0f\\u6587\\u4ef6\\u3001\\u4e34\\u65f6\\u6587\\u4ef6\\u3001\\u4e0d\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\u3002\\u5982\\u679c\\u8981\\u67e5\\u770b\\u6838\\u5fc3\\u6587\\u4ef6\\u3001\\u9700\\u8981\\u591a\\u6b21\\u4fee\\u6539\\u7684\\u6587\\u4ef6\\u3001\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\uff0c\\u8bf7\\u4f7f\\u7528\\u805a\\u7126\\u529f\\u80fd\\u3002\\u8bf7\\u786e\\u8ba4\\u4f7f\\u7528\\u9605\\u8bfb\\u8fd8\\u662f\\u805a\\u7126\\uff1f\", \"instruction\": \"\\u8bf7\\u4f7f\\u7528 confirm_read_or_focus \\u5de5\\u5177\\u6765\\u9009\\u62e9\\u64cd\\u4f5c\\u65b9\\u5f0f\\uff0c\\u6587\\u4ef6\\u8def\\u5f84: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\", \"file_path\": \"/Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\"}",
"timestamp": "2025-09-25T16:12:34.162876",
"tool_call_id": "read_file:31",
"name": "read_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:12:47.197429",
"tool_calls": [
{
"id": "confirm_read_or_focus:32",
"index": 0,
"type": "function",
"function": {
"name": "confirm_read_or_focus",
"arguments": "{\"file_path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析/04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\", \"choice\": \"read\", \"reason\": \"这是一个分析结果文件,我只需要临时查看内容了解分析结果,不需要频繁修改\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"action\": \"read\", \"result\": {\"success\": true, \"path\": \"\\u89c6\\u9891\\u5206\\u6790/04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\", \"content\": \"\\u89c6\\u9891\\u6587\\u4ef6: 04da4de9d2935e09408e4fefe55a0e14.mp4\\n\\u6587\\u4ef6\\u5927\\u5c0f: 5788383 \\u5b57\\u8282\\n\\u5206\\u6790\\u65f6\\u95f4: 04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\\n\\n### \\u57fa\\u7840\\u4fe1\\u606f\\n- **\\u89c6\\u9891\\u65f6\\u957f**\\uff1a\\u7ea643\\u79d2\\uff08\\u4ece0.0\\u79d2\\u523042.9\\u79d2\\uff09\\u3002\\n- **\\u753b\\u8d28**\\uff1a\\u6574\\u4f53\\u753b\\u8d28\\u8f83\\u4e3a\\u6e05\\u6670\\uff0c\\u8272\\u5f69\\u8fd8\\u539f\\u5ea6\\u8f83\\u597d\\uff0c\\u4eba\\u7269\\u548c\\u573a\\u666f\\u7ec6\\u8282\\u80fd\\u591f\\u6e05\\u6670\\u5c55\\u73b0\\u3002\\n- **\\u7c7b\\u578b**\\uff1a\\u8fd9\\u662f\\u4e00\\u4e2a\\u4ee5\\u4e03\\u5915\\u8282\\u4e3a\\u4e3b\\u9898\\u7684\\u77ed\\u89c6\\u9891\\uff0c\\u878d\\u5408\\u4e86\\u4e3b\\u6301\\u4eba\\u795d\\u798f\\u3001\\u60c5\\u4fa3\\u4e92\\u52a8\\u573a\\u666f\\u3001\\u52a8\\u753b\\u5143\\u7d20\\u4ee5\\u53ca\\u751f\\u6d3b\\u573a\\u666f\\u7b49\\uff0c\\u5c5e\\u4e8e\\u8282\\u65e5\\u795d\\u798f\\u4e0e\\u60c5\\u611f\\u8868\\u8fbe\\u7c7b\\u89c6\\u9891\\u3002\\n\\n### \\u5185\\u5bb9\\u63cf\\u8ff0\\n\\u89c6\\u9891\\u4ee5\\u201c\\u4eca\\u65e5\\u4e03\\u5915 \\u795d\\u798f\\u6240\\u6709\\u6709\\u60c5\\u4eba\\u6bcf\\u5929\\u90fd\\u80fd\\u76f8\\u89c1\\u201d\\u4e3a\\u4e3b\\u9898\\uff0c\\u901a\\u8fc7\\u4e0d\\u540c\\u573a\\u666f\\u5c55\\u73b0\\u3002\\u9996\\u5148\\u662f\\u603b\\u53f0\\u4e3b\\u6301\\u4eba\\u5eb7\\u8f89\\u51fa\\u955c\\uff0c\\u63a5\\u7740\\u5207\\u6362\\u5230\\u6d77\\u8fb9\\u60c5\\u4fa3\\u4e92\\u52a8\\u3001\\u591c\\u665a\\u7275\\u624b\\u6563\\u6b65\\u7684\\u60c5\\u4fa3\\u3001\\u725b\\u90ce\\u7ec7\\u5973\\u52a8\\u753b\\u3001\\u5bb6\\u5ead\\u9910\\u684c\\u7f8e\\u98df\\u3001\\u516c\\u56ed\\u548c\\u8857\\u9053\\u4e0a\\u7684\\u60c5\\u4fa3\\u4e92\\u52a8\\u3001\\u5ba4\\u5185\\u5403\\u706b\\u9505\\u573a\\u666f\\u3001\\u624b\\u6367\\u793c\\u7269\\u753b\\u9762\\u3001\\u8001\\u5e74\\u592b\\u5987\\u7275\\u624b\\u753b\\u9762\\u3001\\u83dc\\u5e02\\u573a\\u573a\\u666f\\u3001\\u53a8\\u623f\\u573a\\u666f\\u3001\\u4e3b\\u6301\\u4eba\\u6492\\u8d1d\\u5b81\\u76f8\\u5173\\u753b\\u9762\\u3001\\u5ba4\\u5185\\u9910\\u684c\\u573a\\u666f\\u3001\\u4e3b\\u6301\\u4eba\\u753b\\u9762\\u3001\\u591c\\u665a\\u8857\\u5934\\u573a\\u666f\\u3001\\u533b\\u9662\\u7b49\\u5019\\u573a\\u666f\\u7b49\\uff0c\\u6700\\u540e\\u4ee5\\u6296\\u97f3\\u641c\\u7d22\\u754c\\u9762\\u7ed3\\u675f\\u3002\\n\\n### \\u89c6\\u89c9\\u7279\\u5f81\\n- **\\u989c\\u8272**\\uff1a\\u89c6\\u9891\\u4e2d\\u989c\\u8272\\u4e30\\u5bcc\\u591a\\u6837\\uff0c\\u6d77\\u8fb9\\u573a\\u666f\\u6709\\u81ea\\u7136\\u7684\\u6c99\\u6ee9\\u548c\\u6d77\\u6c34\\u989c\\u8272\\uff0c\\u591c\\u665a\\u8857\\u9053\\u6709\\u6696\\u9ec4\\u8272\\u706f\\u5149\\uff0c\\u52a8\\u753b\\u573a\\u666f\\u8272\\u5f69\\u9c9c\\u8273\\uff0c\\u7f8e\\u98df\\u573a\\u666f\\u8272\\u5f69\\u8bf1\\u4eba\\uff0c\\u5ba4\\u5185\\u573a\\u666f\\u8272\\u8c03\\u6e29\\u99a8\\u7b49\\u3002\\u4f8b\\u5982\\uff0c\\u60c5\\u4fa3\\u5728\\u6d77\\u8fb9\\u7684\\u753b\\u9762\\uff0c\\u6c99\\u6ee9\\u5448\\u73b0\\u6d45\\u68d5\\u8272\\uff0c\\u6d77\\u6c34\\u4e3a\\u6d45\\u84dd\\u8272\\uff0c\\u4eba\\u7269\\u670d\\u88c5\\u989c\\u8272\\u9c9c\\u660e\\uff08\\u5982\\u7ea2\\u8272\\u4e0a\\u8863\\uff09\\uff1b\\u591c\\u665a\\u8857\\u9053\\u7684\\u6696\\u9ec4\\u8272\\u706f\\u5149\\u8425\\u9020\\u51fa\\u6d6a\\u6f2b\\u6c1b\\u56f4\\u3002\\n- **\\u8fd0\\u52a8**\\uff1a\\u89c6\\u9891\\u4e2d\\u5305\\u542b\\u591a\\u79cd\\u8fd0\\u52a8\\u5143\\u7d20\\uff0c\\u5982\\u60c5\\u4fa3\\u5728\\u6d77\\u8fb9\\u73a9\\u6c34\\uff08\\u624b\\u90e8\\u52a8\\u4f5c\\uff09\\u3001\\u7275\\u624b\\u6563\\u6b65\\uff08\\u4eba\\u7269\\u79fb\\u52a8\\uff09\\u3001\\u52a8\\u753b\\u4e2d\\u725b\\u90ce\\u7ec7\\u5973\\u7684\\u59ff\\u6001\\uff08\\u4eff\\u4f5b\\u5728\\u4e92\\u52a8\\uff09\\u3001\\u4eba\\u62c9\\u7740\\u5750\\u5728\\u6ed1\\u677f\\u4e0a\\u7684\\u4eba\\u79fb\\u52a8\\uff08\\u4eba\\u7269\\u4f4d\\u7f6e\\u53d8\\u5316\\uff09\\u7b49\\u3002\\u4f8b\\u5982\\uff0c\\u6d77\\u8fb9\\u60c5\\u4fa3\\u5f2f\\u8170\\u73a9\\u6c34\\uff0c\\u624b\\u90e8\\u5728\\u6c34\\u4e2d\\u6709\\u52a8\\u4f5c\\uff1b\\u591c\\u665a\\u60c5\\u4fa3\\u7275\\u624b\\u5411\\u524d\\u8d70\\uff0c\\u4eba\\u7269\\u4f4d\\u7f6e\\u9010\\u6e10\\u53d8\\u5316\\u3002\\n- **\\u5f62\\u72b6**\\uff1a\\u753b\\u9762\\u4e2d\\u6709\\u5404\\u79cd\\u5f62\\u72b6\\uff0c\\u4eba\\u7269\\u7684\\u8f6e\\u5ed3\\uff08\\u5982\\u7a7f\\u7740\\u897f\\u88c5\\u7684\\u4e3b\\u6301\\u4eba\\u3001\\u4f11\\u95f2\\u88c5\\u7684\\u60c5\\u4fa3\\u7b49\\u4e0d\\u540c\\u8eab\\u5f62\\uff09\\u3001\\u98df\\u7269\\u7684\\u5f62\\u72b6\\uff08\\u5982\\u5706\\u5f62\\u7684\\u8461\\u8404\\u3001\\u5fc3\\u5f62\\u7684\\u6c34\\u679c\\u76d8\\u7b49\\uff09\\u3001\\u52a8\\u753b\\u4e2d\\u4eba\\u7269\\u548c\\u7269\\u4f53\\u7684\\u5f62\\u72b6\\uff08\\u725b\\u90ce\\u7ec7\\u5973\\u7684\\u4f20\\u7edf\\u670d\\u9970\\u5f62\\u72b6\\u3001\\u4e91\\u6735\\u5f62\\u72b6\\u7b49\\uff09\\u3002\\u4f8b\\u5982\\uff0c\\u5fc3\\u5f62\\u6c34\\u679c\\u76d8\\u91cc\\u7684\\u6c34\\u679c\\u6446\\u653e\\u6210\\u5fc3\\u5f62\\uff0c\\u8461\\u8404\\u662f\\u5706\\u5f62\\uff0c\\u52a8\\u753b\\u4e2d\\u725b\\u90ce\\u7ec7\\u5973\\u7684\\u670d\\u9970\\u6709\\u4f20\\u7edf\\u7684\\u957f\\u888d\\u5f62\\u72b6\\u3002\\n\\n### \\u6280\\u672f\\u7279\\u5f81\\n- **\\u5206\\u8fa8\\u7387**\\uff1a\\u4ece\\u753b\\u9762\\u6e05\\u6670\\u5ea6\\u6765\\u770b\\uff0c\\u89c6\\u9891\\u5206\\u8fa8\\u7387\\u8f83\\u9ad8\\uff0c\\u80fd\\u591f\\u6e05\\u6670\\u5c55\\u793a\\u4eba\\u7269\\u9762\\u90e8\\u8868\\u60c5\\u3001\\u7269\\u4f53\\u7ec6\\u8282\\u7b49\\u3002\\u4f8b\\u5982\\uff0c\\u4e3b\\u6301\\u4eba\\u5eb7\\u8f89\\u7684\\u9762\\u90e8\\u8868\\u60c5\\u3001\\u6d77\\u8fb9\\u60c5\\u4fa3\\u624b\\u90e8\\u52a8\\u4f5c\\u7ec6\\u8282\\u3001\\u7f8e\\u98df\\u7684\\u7eb9\\u7406\\u7b49\\u90fd\\u80fd\\u6e05\\u6670\\u5448\\u73b0\\u3002\\n- **\\u5e27\\u7387**\\uff1a\\u89c6\\u9891\\u64ad\\u653e\\u6d41\\u7545\\uff0c\\u63a8\\u6d4b\\u5e27\\u7387\\u8f83\\u9ad8\\uff0c\\u80fd\\u591f\\u4fdd\\u8bc1\\u753b\\u9762\\u4e2d\\u4eba\\u7269\\u52a8\\u4f5c\\u548c\\u573a\\u666f\\u5207\\u6362\\u7684\\u8fde\\u8d2f\\u6027\\u3002\\u4f8b\\u5982\\uff0c\\u60c5\\u4fa3\\u7275\\u624b\\u6563\\u6b65\\u7684\\u52a8\\u4f5c\\u8fde\\u8d2f\\uff0c\\u6ca1\\u6709\\u5361\\u987f\\u611f\\uff1b\\u4e0d\\u540c\\u573a\\u666f\\u4e4b\\u95f4\\u7684\\u5207\\u6362\\u4e5f\\u5f88\\u987a\\u7545\\u3002\\n- **\\u7f16\\u7801\\u8d28\\u91cf**\\uff1a\\u7f16\\u7801\\u8d28\\u91cf\\u8f83\\u597d\\uff0c\\u89c6\\u9891\\u6ca1\\u6709\\u660e\\u663e\\u7684\\u538b\\u7f29\\u5931\\u771f\\u3001\\u8272\\u5757\\u3001\\u6a21\\u7cca\\u7b49\\u95ee\\u9898\\uff0c\\u8272\\u5f69\\u8fc7\\u6e21\\u81ea\\u7136\\uff0c\\u7ec6\\u8282\\u4fdd\\u7559\\u5b8c\\u6574\\u3002\\u4f8b\\u5982\\uff0c\\u52a8\\u753b\\u573a\\u666f\\u7684\\u8272\\u5f69\\u8fc7\\u6e21\\u81ea\\u7136\\uff0c\\u4eba\\u7269\\u548c\\u7269\\u4f53\\u8fb9\\u7f18\\u6e05\\u6670\\uff1b\\u5ba4\\u5185\\u7f8e\\u98df\\u573a\\u666f\\u7684\\u8272\\u5f69\\u8fd8\\u539f\\u771f\\u5b9e\\uff0c\\u6ca1\\u6709\\u51fa\\u73b0\\u8272\\u5f69\\u504f\\u5dee\\u3002\\n\\n### \\u521b\\u610f\\u8bc4\\u4ef7\\n- **\\u6574\\u4f53\\u6548\\u679c**\\uff1a\\u89c6\\u9891\\u901a\\u8fc7\\u591a\\u79cd\\u573a\\u666f\\u7684\\u5207\\u6362\\uff0c\\u5168\\u9762\\u5730\\u5c55\\u73b0\\u4e86\\u4e03\\u5915\\u8282\\u7684\\u6c1b\\u56f4\\u4ee5\\u53ca\\u5bf9\\u6709\\u60c5\\u4eba\\u7684\\u795d\\u798f\\uff0c\\u4ece\\u4e3b\\u6301\\u4eba\\u7684\\u6b63\\u5f0f\\u795d\\u798f\\u5230\\u5404\\u79cd\\u751f\\u6d3b\\u4e2d\\u7684\\u60c5\\u4fa3\\u4e92\\u52a8\\u573a\\u666f\\uff0c\\u518d\\u5230\\u4f20\\u7edf\\u52a8\\u753b\\u5143\\u7d20\\uff0c\\u5c42\\u6b21\\u4e30\\u5bcc\\uff0c\\u80fd\\u591f\\u5f15\\u8d77\\u89c2\\u4f17\\u7684\\u60c5\\u611f\\u5171\\u9e23\\u3002\\u4f8b\\u5982\\uff0c\\u65e2\\u6709\\u4e3b\\u6301\\u4eba\\u5e84\\u91cd\\u7684\\u795d\\u798f\\uff0c\\u53c8\\u6709\\u6d77\\u8fb9\\u3001\\u8857\\u9053\\u3001\\u516c\\u56ed\\u7b49\\u5404\\u79cd\\u6d6a\\u6f2b\\u7684\\u60c5\\u4fa3\\u4e92\\u52a8\\u573a\\u666f\\uff0c\\u8fd8\\u6709\\u4f53\\u73b0\\u751f\\u6d3b\\u6c14\\u606f\\u7684\\u83dc\\u5e02\\u573a\\u3001\\u53a8\\u623f\\u573a\\u666f\\uff0c\\u8ba9\\u89c2\\u4f17\\u611f\\u53d7\\u5230\\u7231\\u60c5\\u5728\\u4e0d\\u540c\\u751f\\u6d3b\\u573a\\u666f\\u4e2d\\u7684\\u4f53\\u73b0\\u3002\\n- **\\u5236\\u4f5c\\u8d28\\u91cf**\\uff1a\\u5236\\u4f5c\\u7cbe\\u826f\\uff0c\\u753b\\u9762\\u9009\\u53d6\\u5178\\u578b\\u4e14\\u5bcc\\u6709\\u4ee3\\u8868\\u6027\\uff0c\\u97f3\\u4e50\\uff08\\u5982\\u679c\\u6709\\uff0c\\u4ece\\u6c1b\\u56f4\\u63a8\\u6d4b\\u5e94\\u662f\\u6e29\\u99a8\\u6d6a\\u6f2b\\u7684\\u97f3\\u4e50\\uff09\\u4e0e\\u753b\\u9762\\u914d\\u5408\\u9ed8\\u5951\\uff0c\\u6587\\u5b57\\u5b57\\u5e55\\u4e0e\\u753b\\u9762\\u5185\\u5bb9\\u76f8\\u5f97\\u76ca\\u5f70\\uff0c\\u589e\\u5f3a\\u4e86\\u60c5\\u611f\\u8868\\u8fbe\\u548c\\u4e3b\\u9898\\u4f20\\u8fbe\\u3002\\u4f8b\\u5982\\uff0c\\u6587\\u5b57\\u5b57\\u5e55\\u201c\\u795d\\u798f\\u6240\\u6709\\u6709\\u60c5\\u4eba\\u6bcf\\u5929\\u90fd\\u80fd\\u76f8\\u89c1\\u201d\\u201c\\u4e24\\u60c5\\u82e5\\u662f\\u4e45\\u957f\\u65f6\\uff0c\\u53c8\\u5c82\\u5728\\u671d\\u671d\\u66ae\\u66ae\\u201d\\u7b49\\u4e0e\\u76f8\\u5e94\\u753b\\u9762\\u914d\\u5408\\uff0c\\u6df1\\u5316\\u4e86\\u4e03\\u5915\\u8282\\u7231\\u60c5\\u4e3b\\u9898\\uff1b\\u753b\\u9762\\u7684\\u62cd\\u6444\\u89d2\\u5ea6\\u548c\\u6784\\u56fe\\u4e5f\\u5f88\\u8bb2\\u7a76\\uff0c\\u5982\\u60c5\\u4fa3\\u5728\\u6d77\\u8fb9\\u7684\\u4f4e\\u89d2\\u5ea6\\u62cd\\u6444\\u7a81\\u51fa\\u4eb2\\u5bc6\\u4e92\\u52a8\\uff0c\\u8001\\u5e74\\u592b\\u5987\\u7275\\u624b\\u7684\\u80cc\\u5f71\\u62cd\\u6444\\u8425\\u9020\\u51fa\\u6e29\\u99a8\\u957f\\u4e45\\u7684\\u611f\\u89c9\\u3002\\n\\n\\u603b\\u4f53\\u800c\\u8a00\\uff0c\\u8fd9\\u4e2a\\u89c6\\u9891\\u5728\\u4e03\\u5915\\u8282\\u4e3b\\u9898\\u8868\\u8fbe\\u3001\\u60c5\\u611f\\u4f20\\u9012\\u4ee5\\u53ca\\u5236\\u4f5c\\u6c34\\u5e73\\u4e0a\\u90fd\\u8868\\u73b0\\u51fa\\u8272\\uff0c\\u80fd\\u591f\\u6709\\u6548\\u5730\\u5438\\u5f15\\u89c2\\u4f17\\u5e76\\u4f20\\u8fbe\\u51fa\\u7f8e\\u597d\\u7684\\u795d\\u798f\\u3002 \", \"size\": 4335, \"content_preview\": \"\\u89c6\\u9891\\u6587\\u4ef6: 04da4de9d2935e09408e4fefe55a0e14.mp4\\n\\u6587\\u4ef6\\u5927\\u5c0f: 5788383 \\u5b57\\u8282\\n\\u5206\\u6790\\u65f6\\u95f4: 04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\\n\\n### \\u57fa\\u7840\\u4fe1\\u606f\\n- **\\u89c6\\u9891\\u65f6\\u957f**\\uff1a\\u7ea643\\u79d2\\uff08\\u4ece0.0\\u79d2\\u523042.9\\u79d2\\uff09\\u3002\\n- **\\u753b\\u8d28**\\uff1a\\u6574\\u4f53\\u753b\\u8d28\\u8f83\\u4e3a\\u6e05\\u6670\\uff0c\\u8272\\u5f69\\u8fd8\\u539f\\u5ea6\\u8f83\\u597d\\uff0c\\u4eba\\u7269\\u548c\\u573a\\u666f\\u7ec6\\u8282\\u80fd\\u591f\\u6e05\\u6670\\u5c55\\u73b0\\u3002\\n- **\\u7c7b\\u578b**\\uff1a\\u8fd9\\u662f\\u4e00\\u4e2a\\u4ee5\\u4e03\\u5915\\u8282\\u4e3a\\u4e3b\\u9898\\u7684\\u77ed\\u89c6\\u9891\\uff0c\\u878d\\u5408\\u4e86\\u4e3b\\u6301\\u4eba\\u795d\\u798f\\u3001\\u60c5\\u4fa3\\u4e92\\u52a8\\u573a\\u666f\\u3001\\u52a8\\u753b\\u5143\\u7d20\\u4ee5\\u53ca\\u751f\\u6d3b\\u573a\\u666f\\u7b49\\uff0c\\u5c5e\\u4e8e\\u8282\\u65e5\\u795d\\u798f\\u4e0e\\u60c5\\u611f\\u8868\\u8fbe\\u7c7b\\u89c6\\u9891\\u3002\\n\\n### \\u5185\\u5bb9\\u63cf\\u8ff0\\n\\u89c6\\u9891\\u4ee5\\u201c\\u4eca\\u65e5\\u4e03\\u5915 \\u795d\\u798f\\u6240\\u6709\\u6709\\u60c5\\u4eba\\u6bcf\\u5929\\u90fd\\u80fd\\u76f8\\u89c1\\u201d\\u4e3a\\u4e3b\\u9898\\uff0c\\u901a\\u8fc7\\u4e0d\\u540c\\u573a\\u666f\\u5c55\\u73b0\\u3002\\u9996\\u5148\\u662f\\u603b\\u53f0\\u4e3b\\u6301\\u4eba\\u5eb7\\u8f89\\u51fa\\u955c\\uff0c\\u63a5\\u7740\\u5207\\u6362\\u5230\\u6d77\\u8fb9\\u60c5\\u4fa3\\u4e92\\u52a8\\u3001\\u591c\\u665a\\u7275\\u624b\\u6563\\u6b65\\u7684\\u60c5\\u4fa3\\u3001\\u725b\\u90ce\\u7ec7\\u5973\\u52a8\\u753b\\u3001\\u5bb6\\u5ead\\u9910\\u684c\\u7f8e\\u98df\\u3001\\u516c\\u56ed\\u548c\\u8857\\u9053\\u4e0a\\u7684\\u60c5\\u4fa3\\u4e92\\u52a8\\u3001\\u5ba4\\u5185\\u5403\\u706b\\u9505\\u573a\\u666f\\u3001\\u624b\\u6367\\u793c\\u7269\\u753b\\u9762\\u3001\\u8001\\u5e74\\u592b\\u5987\\u7275\\u624b\\u753b\\u9762\\u3001\\u83dc\\u5e02\\u573a\\u573a\\u666f\\u3001\\u53a8\\u623f\\u573a\\u666f\\u3001\\u4e3b\\u6301\\u4eba\\u6492\\u8d1d\\u5b81\\u76f8\\u5173\\u753b\\u9762\\u3001\\u5ba4\\u5185\\u9910\\u684c\\u573a\\u666f\\u3001\\u4e3b\\u6301\\u4eba\\u753b\\u9762\\u3001\\u591c\\u665a\\u8857\\u5934\\u573a\\u666f\\u3001\\u533b\\u9662\\u7b49\\u5019\\u573a\\u666f\\u7b49\\uff0c\\u6700\\u540e\\u4ee5\\u6296\\u97f3\\u641c\\u7d22\\u754c\\u9762\\u7ed3\\u675f\\u3002\\n\\n### \\u89c6\\u89c9\\u7279\\u5f81\\n- **\\u989c\\u8272**\\uff1a\\u89c6\\u9891\\u4e2d\\u989c\\u8272\\u4e30\\u5bcc\\u591a\\u6837\\uff0c\\u6d77\\u8fb9\\u573a\\u666f\\u6709\\u81ea\\u7136\\u7684\\u6c99\\u6ee9\\u548c...\"}, \"message\": \"\\u5df2\\u4f7f\\u7528\\u8bfb\\u53d6\\u65b9\\u5f0f\\u67e5\\u770b\\u6587\\u4ef6: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u89c6\\u9891\\u5206\\u6790/04da4de9d2935e09408e4fefe55a0e14.mp4_analysis.txt\"}",
"timestamp": "2025-09-25T16:12:49.010106",
"tool_call_id": "confirm_read_or_focus:32",
"name": "confirm_read_or_focus"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:12:52.299094",
"tool_calls": [
{
"id": "terminal_session:33",
"index": 0,
"type": "function",
"function": {
"name": "terminal_session",
"arguments": "{\"action\": \"close\", \"session_name\": \"video_analysis\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"video_analysis\", \"remaining_sessions\": [], \"new_active\": null}",
"timestamp": "2025-09-25T16:12:54.109411",
"tool_call_id": "terminal_session:33",
"name": "terminal_session"
},
{
"role": "assistant",
"content": "## 🎉 视频分析完成!\n\n我成功创建了一个测试视频并用豆包API进行了分析。以下是整个过程的总结\n\n### 📹 创建的视频\n- **simple_test.mp4** (183KB, 5秒)\n - 简单的彩色渐变动画\n - 包含帧编号显示\n - 颜色从绿色过渡到灰色、紫色等\n\n### 🔍 分析结果对比\n\n#### 自制测试视频分析\n- **类型**:技术测试类视频\n- **内容**:纯色背景 + 帧编号文字\n- **技术特征**:简单,主要用于测试目的\n- **创意评价**:基础的技术演示,缺乏艺术性\n\n#### 原有七夕视频分析 \n- **类型**:节日祝福与情感表达类\n- **内容**:七夕节主题,包含主持人祝福、情侣互动场景\n- **技术特征**:制作精良,画面丰富,色彩饱满\n- **创意评价**:层次丰富,能引起情感共鸣\n\n### 🛠️ 技术实现\n1. **视频创建**使用Python + OpenCV创建测试视频\n2. **API调用**豆包视频理解API (doubao-1-5-vision-pro-250328)\n3. **分析维度**\n - 基础信息(时长、画质、类型)\n - 内容描述\n - 视觉特征(颜色、运动、形状)\n - 技术特征(分辨率、帧率、编码质量)\n - 创意评价\n\n### 📊 分析质量\n豆包API能够准确识别\n- ✅ 视频的基本属性和技术参数\n- ✅ 内容的主题和情感倾向 \n- ✅ 视觉元素和运动特征\n- ✅ 制作质量和创意水平\n- ✅ 给出具体的改进建议\n\n这个测试证明了AI视频理解技术的成熟度能够进行深度的视频内容分析和评价。",
"timestamp": "2025-09-25T16:13:15.175235"
},
{
"role": "user",
"content": "帮我搜索一下火山引擎的api分析视频时能传入的视频方式有哪些",
"timestamp": "2025-09-25T16:19:00.918944"
},
{
"role": "assistant",
"content": "我来帮你搜索火山引擎API支持的视频传入方式。",
"timestamp": "2025-09-25T16:19:09.842949"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:19:09.851826",
"tool_calls": [
{
"id": "web_search:34",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"query\": \"火山引擎豆包API 视频理解 视频传入方式 base64 URL 格式要求\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: 火山引擎豆包API 视频理解 视频传入方式 base64 URL 格式要求\\n📅 搜索时间: 2025-09-25T16:19:22.392365\\n\\n📝 AI摘要:\\nFor Volcengine's video API, input videos in MP4 format or use Base64 encoding with \\\"data:video/mov;base64,\\\" prefix. Maximum file size is 50MB.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. 视觉理解--火山方舟大模型服务平台\\n 🔗 https://www.volcengine.com/docs/82379/1362931\\n 📄 | 视频格式 | 文件扩展名 | 内容格式 Content Type 上传视频至对象存储时设置。 传入 Base64 编码时使用Base64 编码输入。 视频格式需小写 |\\n --- \\n| MP4 | .mp4 | |\\n| | | |\\n| | | url传入图片对象存储请设置 Content Type 为:`video/quicktime` base64编码请使用 `...\\n\\n2. 对话(Chat) API--火山方舟大模型服务平台\\n 🔗 https://www.volcengine.com/docs/82379/1362913\\n 📄 支持传入视频链接或视频的Base64编码。具体使用请参见\\n\\n视频理解说明\\n。\\n\\n\\n\\n\\n\\nmessages.content.video\\\\_url.\\nfps\\n \\n\\nfloat/ null\\n \\n\\n默认值 1\\n\\n\\n取值范围\\n\\n[0.2, 5]\\n。\\n\\n\\n每秒钟从视频中抽取指定数量的图像\\n。\\n取值越高对于视频中画面变化理解越精细取值越低对于视频中画面变化感知减弱但是使用的 token 花费...\\n\\n3. 视觉理解能力--实时音视频 - 火山引擎\\n 🔗 https://www.volcengine.com/docs/6348/1408245\\n 📄 | 维度 | 实时视频理解 | 外部图片理解 |\\n --- \\n| 工作原理 | 智能体持续订阅 RTC 实时视频流,并在后台自动抽帧来分析实时画面。 | 通过 API 主动上传指定的静态图片AI 将对其进行精准解读。 |\\n| 适用场景 | 需要 AI 持续观察和反馈的场景如实时环境感知、AR 视觉引导、游戏陪玩。 | 由用户主动触发的一次性分析场景,如拍照识物、相册图片分析、截图问答。 |\\n|...\\n\\n4. 创建视频生成任务API--火山方舟大模型服务平台\\n 🔗 https://www.volcengine.com/docs/82379/1520757\\n 📄 输入给模型生成视频的内容,图片信息部分。​\\n\\n属性\\n\\n\\n\\ncontent.type string 必选​\\n\\n输入内容的类型此处应为 image_url。\\n\\n\\n\\ncontent.image_url object 必选​\\n\\n输入给模型的图片对象。\\n\\n属性\\n\\n\\n\\ncontent.image_url.url string 必选​\\n\\n图片信息可以是图片URL或图片 Base64 编码...\\n\\n5. 模型精调数据集格式说明--火山方舟大模型服务平台 - 火山引擎\\n 🔗 https://www.volcengine.com/docs/82379/1099461\\n 📄 \\\"url\\\":\\\"base64/相对路径\\\"\\n }\\n ]\\n }\\n ]\\n}\\n``` [...] \\\"type\\\":\\\"text\\\",\\n \\\"text\\\":\\\"[1.0 second]\\\"\\n },\\n {\\n \\\"type\\\"...\\n\\n6. 产品更新公告--火山方舟大模型服务平台\\n 🔗 https://www.volcengine.com/docs/82379/1159177\\n 📄 | 视觉理解模型 | API中system\\\\_prompt支持传图VLM的system\\\\_prompt支持list结构可传text和image\\\\_url 单次请求传入图片数量只受模型上下文长度的限制可根据图片转换的token数判断 | 视觉理解模型 |\\n| 视频生成模型 | 视频生成模型API支持更多图片格式JPEGJPG、PNG、webp、bmp、tiff | 视频生成模型 |...\\n\\n7. 使用字节豆包大模型api识别本地或网络图片中文字内容返回给我原创\\n 🔗 https://blog.csdn.net/weixin_44786530/article/details/146113781\\n 📄 model=model_id, messages=construct_messages( selected_images, prompt, ) ) print(\\\"【视频理解结果】\\\\n\\\", response.choices.message.content) ...\\n\\n8. Base URL及鉴权--火山方舟大模型服务平台\\n 🔗 https://www.volcengine.com/docs/82379/1298459\\n 📄 Base URL及鉴权--火山方舟大模型服务平台-火山引擎\\n\\n\\n\\n上下文缓存(Responses API)\\n\\nResponses API 教程\\n\\nAgent开发\\n\\nAgent开发指南“显眼包”市场策略分析和报告生成\\n\\nAgent开发指南生成“显眼包”网站\\n\\nAgent开发指南创作“显眼包”营销视频\\n\\n购买指南\\n\\n模型服务价格\\n\\n模型服务计费说明\\n\\nTPM保障包\\n\\n模型单元\\n\\n知识库计费\\n\\n联...\\n\\n9. 大模型语音合成API - 火山引擎\\n 🔗 https://www.volcengine.com/docs/6561/1257584\\n 📄 Bearer 和 token 使用分号 ; 分隔,替换时请勿保留{}\\n\\nAppID/Token/Cluster 等信息可参考 控制台使用FAQ-Q1\\n\\n3. 请求方式\\n\\n### 3.1 二进制协议\\n\\n#### 报文格式(Message format)\\n\\nImage 3: Image\\n\\n 所有字段以 Big Endian(大端序) 的方式存储。\\n\\n字段描述 [...] ```go\\n{\\n ...\\n\\n10. 帮助文档--火山方舟大模型服务平台\\n 🔗 https://www.volcengine.com/docs/82379/1263594\\n 📄 帮助文档--火山方舟大模型服务平台-火山引擎\\n\\n\\n\\n上下文缓存(Responses API)\\n\\nResponses API 教程\\n\\nAgent开发\\n\\nAgent开发指南“显眼包”市场策略分析和报告生成\\n\\nAgent开发指南生成“显眼包”网站\\n\\nAgent开发指南创作“显眼包”营销视频\\n\\n产品计费\\n\\n免费推理额度\\n\\n模型服务价格\\n\\n模型服务计费说明\\n\\nTPM保障包\\n\\n模型单元\\n\\n知识库计费\\n\\n...\"}",
"timestamp": "2025-09-25T16:19:22.393973",
"tool_call_id": "web_search:34",
"name": "web_search"
},
{
"role": "assistant",
"content": "让我查看更详细的官方文档:",
"timestamp": "2025-09-25T16:19:32.652710"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:19:32.663730",
"tool_calls": [
{
"id": "extract_webpage:35",
"index": 0,
"type": "function",
"function": {
"name": "extract_webpage",
"arguments": "{\"url\": \"https://www.volcengine.com/docs/82379/1362931\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"url\": \"https://www.volcengine.com/docs/82379/1362931\", \"content\": \"🌐 网页内容 (48099 字符):\\n📍 URL: https://www.volcengine.com/docs/82379/1362931\\n==================================================\\n* 文档首页\\n/\\n火山方舟大模型服务平台\\n/\\n模型调用教程\\n/\\n视觉理解\\n\\n视觉理解\\n\\n最近更新时间2025.09.12 11:40:39\\n首次发布时间2024.11.07 20:54:45\\n\\n[我的收藏](/docs/favorite)\\n\\n有用\\n\\n有用\\n\\n无用\\n\\n无用\\n\\n文档反馈\\n\\n问问助手\\n\\n部分大模型具备视觉理解能力如当您传入图片或视频时大模型可以理解图片或视频里的视觉信息并结合这些信息完成如描述其中的物体等视觉相关任务。通过这篇教程您可以学习到如何通过调用大模型 API 来识别传入图片和视频里的信息。\\n\\n> * 查看[使用示例](/docs/82379/1362931#547c81e8),了解常见调用方法。\\n> * 查看[对话(Chat) API](https://www.volcengine.com/docs/82379/1494384),检索 API 字段参数说明。\\n> * 查看[视频理解](/docs/82379/1362931#3c06d308)示例,和[视频理解](/docs/82379/1362931#1aba7aee)使用说明。\\n\\n支持模型\\n\\n当前支持视觉理解的模型请参见[视觉理解](/docs/82379/1330310#ff5ef604)。\\n\\n前提条件\\n\\n* [获取 API Key](https://console.volcengine.com/ark/region:ark+cn-beijing/apiKey) 。\\n + 使用 Access Key 鉴权请参考[Access Key 签名鉴权](/docs/82379/1298459#21bff83b)。\\n* [开通模型服务](https://console.volcengine.com/ark/region:ark+cn-beijing/openManagement?LLM=%7B%7D&OpenTokenDrawer=false)。\\n* 在[模型列表](/docs/82379/1330310)获取所需 Model ID 。\\n + 通过 Endpoint ID 调用模型服务请参考[获取 Endpoint ID创建自定义推理接入点](/docs/82379/1099522)。\\n\\n快速开始\\n\\n支持视觉理解的大模型当前支持在请求中传入图片链接图片信息需要作为用户角色输入信息传给大模型即`\\\"role\\\": \\\"user\\\"`,下面是简单的视觉模型调用示例代码。\\n\\n图片理解\\n\\n视频理解\\n\\n```\\n\\n import os\\n# 通过 pip install volcengine-python-sdk[ark] 安装方舟SDK\\nfrom volcenginesdkarkruntime import Ark\\n\\n# 替换 <MODEL> 为模型的Model ID\\nmodel=\\\"<MODEL>\\\"\\n\\n# 初始化Ark客户端从环境变量中读取您的API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n\\n# 创建一个对话请求\\nresponse = client.chat.completions.create(\\n # 指定您部署了视觉理解大模型的推理接入点ID\\n model = model,\\n messages = [\\n {\\n # 指定消息的角色为用户\\n \\\"role\\\": \\\"user\\\", \\n \\\"content\\\": [ \\n # 图片信息,希望模型理解的图片\\n {\\\"type\\\": \\\"image_url\\\", \\\"image_url\\\": {\\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/ark_demo_img_1.png\\\"},},\\n # 文本消息,希望模型根据图片信息回答的问题\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"支持输入是图片的模型系列是哪个?\\\"}, \\n ],\\n }\\n ],\\n)\\n\\nprint(response.choices[0].message.content)\\n\\n\\nPython\\n\\n\\n```\\n\\n模型回复预览\\n\\n```\\n\\n 根据表格中的信息,支持输入是图片的模型系列是 **Doubao-1.5-vision**。\\n\\n\\nShell\\n\\n\\n```\\n\\n说明\\n\\n提示词支持图片和文字混排但图文顺序可能对模型的输出效果产生影响。在提示词构成为多张图片+1段文字建议将文字放在提示词最后。\\n\\n```\\n\\n import os\\n# 通过 pip install volcengine-python-sdk[ark] 安装方舟SDK\\nfrom volcenginesdkarkruntime import Ark\\n\\n# 替换 <MODEL> 为模型的Model ID\\nmodel=\\\"<MODEL>\\\"\\n\\n# 初始化Ark客户端从环境变量中读取您的API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n\\n# 创建一个对话请求\\nresponse = client.chat.completions.create(\\n # 指定您部署了视觉理解大模型的推理接入点ID\\n model = model,\\n messages = [\\n {\\n # 指定消息的角色为用户\\n \\\"role\\\": \\\"user\\\", \\n \\\"content\\\": [ \\n {\\n \\\"type\\\": \\\"video_url\\\",\\n \\\"video_url\\\": {\\n # 您可以替换链接为您的实际视频链接\\n \\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_video/ark_vlm_video_input.mp4\\\",\\n }\\n },\\n ],\\n }\\n ],\\n)\\n\\nprint(response.choices[0].message.content)\\n\\n\\nPython\\n\\n\\n```\\n\\n模型回复预览\\n\\n```\\n\\n 视频里展示了一座著名的钟楼钟楼的外观是典型的哥特式建筑风格钟面清晰可见。钟楼的右侧是一条繁忙的桥梁桥上有许多车辆在行驶包括红色的双层巴士。背景中可以看到城市的天际线高楼大厦林立天空中有一些云彩整体氛围显得宁静而繁忙。视频右下角有“AI生成”的字样表明这是由人工智能生成的图像。\\n\\n\\nJSON\\n\\n\\n```\\n\\n使用说明\\n\\n说明\\n\\n处理完图片/视频后,文件会从方舟服务器删除。方舟不会保留您提交的图片、视频以及文本信息等用户数据来训练模型。\\n\\n## 图片理解\\n\\n### 图片传入方式\\n\\n图片 URL 或 Base64 编码。用图片 URL 方式时,需确保图片 URL 可被访问。\\n\\n说明\\n\\n如果您希望获得更低的时延和成本建议使用TOS火山引擎对象存储存储图片并生成访问链接。方舟与 TOS 网络打通,可使用内网通信,具备好处:\\n\\n* 高速访问图片速度,降低模型回复的时延。\\n* 降低公网访问图片产生的流量费用。\\n\\n视觉理解接口 [对话(Chat) API](https://www.volcengine.com/docs/82379/1494384) 是无状态的,如果您需要模型多次理解同一张图片,则每次请求时都需要传入该图片信息。\\n\\n### 图片像素说明\\n\\n1. 方舟在处理图片前会先行进行图片尺寸判断,如果图片超出下面的限制,会直接报错,传入图片满足下面条件(单位 px\\n * 宽 > 14 且 高>14。\\n * 宽\\\\*高范围: [196, 3600万]。\\n2. 满足上述条件的图片,方舟检测图片大小并将图片等比例压缩,并根据不同模式,将图片像素处理(等比例)至下面范围。\\n * `detail:low`模式下104万1024×1024 px\\n * `detail:high`模式下401万2048×1960 px。 \\n 其中\\n * `detail:low`、`detail:high`,指低/高精度理解图像,具体说明请参见[理解图像的深度控制](/docs/82379/1362931#bf4d9224)。\\n\\n说明\\n\\n推荐您自行压缩或裁剪图片可降低模型响应时延以及根据业务灵活调整如裁剪掉图片空白或不重要部分。如自行压缩请控制图片像素`宽×高`)至上述范围。压缩图片示例:[最佳实践-上传本地图片进行分析](/docs/82379/1362931#f6bc4e62)。\\n\\n### 图片数量说明\\n\\n单次请求传入图片数量受限于模型最大上下文长度模型最大上下文长度见[视觉理解能力](/docs/82379/1330310#ff5ef604)模型)。当输入信息过长,譬如上下文长度 32k 的模型,传入 25 张图片,触发了模型上下文长度限制,信息会被截断后处理。\\n\\n> 举例说明:\\n\\n> * 当图片总像素值大,使用模型上下文窗口限制为 32k每个图片转为 1312 个 token ,单轮可传入的图片数量为 `32000 ÷ 1312 = 24` 张。\\n> * 当图片总像素值小,使用模型上下文窗口限制为 32k每个图片转为 256 个 token单轮可传入的数量为 `32000 ÷ 256 = 125` 张。\\n\\n说明\\n\\n模型对图片理解以及内容回复的质量受到同时处理图片信息量的影响。单次请求过多的图片张数会导致模型回复质量下滑以及超出模型上下文限制为了更好的回复质量建议您合理控制传入图片的数量。\\n\\n### 图片文件容量\\n\\n单张图片小于 10 MB。 \\n使用 base64 编码,请求中请求体大小不可超过 64 MB。\\n\\n### token 用量说明\\n\\ntoken 用量,根据图片宽高像素计算可得。图片转化 token 的公式为:\\n\\n```\\n\\n min(图片宽 * 图片高÷784, 单图 token 限制)\\n\\n\\nPlain\\n\\n\\n```\\n\\n* `detail:high`模式下,单图 token 限制为 5120 token。\\n* `detail:low`模式下,单图 token 限制为 1312 token。\\n\\n图片尺寸为 `1280 px × 720 px`,即宽为 1280 px高为 720 px传入模型图片 token 限制为 1312则理解这张图消耗的 token 为`1280×720÷784=1176`,因为小于 1312消耗 token 数为 1176 。 \\n图片尺寸为 `1920 px × 1080 px`,即宽为 1920 px高为 1080 px传入模型图片 token 限制为 1312则理解这张图消耗的 token 为`1920×1080÷784=2645`,因为大于 1312消耗 token 数为 1312 。这时会压缩 token即图片的细节会丢失部分譬如字体很小的图片模型可能就无法准确识别文字内容。\\n\\n### 图片格式说明\\n\\n支持的图片格式如下表注意文件后缀匹配图片格式即图片文件扩展名URL传入时、图片格式声明Base64 编码传入时)需与图片实际信息一致。\\n\\n| **图片格式** | **文件扩展名** | **内容格式** **Content Type** * [上传图片至对象存储时设置](https://www.volcengine.com/docs/6349/145523#%E8%AE%BE%E7%BD%AE%E6%96%87%E4%BB%B6%E5%85%83%E6%95%B0%E6%8D%AE)。 * 传入图片 Base64 编码时使用:[Base64 编码输入](/docs/82379/1362931#f6222fec)。 * 图片格式指定需使用小写 |\\n| --- | --- | --- |\\n| JPEG | .jpg, .jpeg | `image/jpeg` |\\n| PNG | .png | `image/png` |\\n| GIF | .gif | `image/gif` |\\n| WEBP | .webp | `image/webp` |\\n| BMP | .bmp | `image/bmp` |\\n| TIFF | .tiff, .tif | `image/tiff` |\\n| ICO | .ico | `image/ico` |\\n| DIB | .dib | `image/bmp` |\\n| ICNS | .icns | `image/icns` |\\n| SGI | .sgi | `image/sgi` |\\n| JPEG2000 | .j2c, .j2k, .jp2, .jpc, .jpf, .jpx | `image/jp2` |\\n| HEIC | .heic | `image/heic` doubao-1.5-vision-pro及以后视觉理解能力模型支持 |\\n| HEIF | .heif | `image/heif` doubao-1.5-vision-pro及以后视觉理解能力模型支持 |\\n\\n说明\\n\\nTIFF、 SGI、ICNS、JPEG2000 几种格式图片,需要保证和元数据对齐,如在对象存储中正确设置文件元数据,否则会解析失败。详细见 [使用视觉理解模型时报错InvalidParameter](/docs/82379/1359411#effccb14)\\n\\n### API 参数字段说明\\n\\n以下字段视觉理解暂不支持。\\n\\n* 不支持设置频率惩罚系数,无 **frequency\\\\_penalty** 字段。\\n* 不支持设置存在惩罚系数,**presence\\\\_penalty** 字段。\\n* 不支持为单个请求生成多个返回,无 **n** 字段。\\n\\n## 视频理解\\n\\n### 时序信息\\n\\n基于FPS的抽帧获取视频关键帧再通过`时间戳+图像`拼接标记时序信息,模型基于该请求中的时序标记和图像内容,实现对视频的完整理解(包括内容变化、动作逻辑、时序关联等)。 \\n详细原理见 [附1. 视频理解时间戳拼接工作原理](/docs/82379/1362931#b5f696d3)。\\n\\n### 视频格式说明\\n\\n| **视频格式** | **文件扩展名** | **内容格式** **Content Type** * [上传视频至对象存储时设置](https://www.volcengine.com/docs/6349/145523#%E8%AE%BE%E7%BD%AE%E6%96%87%E4%BB%B6%E5%85%83%E6%95%B0%E6%8D%AE)。 * 传入 Base64 编码时使用:[Base64 编码输入](/docs/82379/1362931#f6222fec)。 * 视频格式需小写 |\\n| --- | --- | --- |\\n| MP4 | .mp4 | |\\n| | | |\\n| | | * url传入图片对象存储请设置 Content Type 为:`video/quicktime` * base64编码请使用 `video/mov`,即`data:video/mov;base64,<Base64编码>` |\\n\\n### 视频文件容量\\n\\n单视频文件需在 50MB 以内。\\n\\n### 不支持音频理解\\n\\n### 用量说明\\n\\n单视频 token 用量范围在 [10k, 80k] ,单次请求视频最大 token 量还受模型的最大上下文窗口以及最大输入长度(当启用深度推理模式)限制,超出则请调整传入视频数量或视频长度。 \\n方舟根据帧图像某个时刻的视频画面此处特指输入给模型的帧图像张数视频时长 \\\\* **fps** ),对帧图像进行压缩,以平衡对于视频的理解精度和 token 用量。帧图像会被等比例压缩至 [128 token, 640 token] ,对应像素范围在 [10万 像素, 50万像素]。\\n\\n* 如`fps`过高或视频长度过长,需要处理的帧图像数量超出 640 帧80×1024 token ÷ 128 token / 帧 = 640 帧),则按帧图像 128 token `视频时长/640` 时间间隔均匀抽取 640帧。此时与请求中的配置不符建议评估输出效果按需调整视频时长或 **fps** 字段配置。\\n* 如`fps`过小或视频长度过短需要处理的帧图像数量不足16帧10×1024 token ÷ 640 token / 帧 = 16 帧),则按帧图像 640 token `视频时长/16` 时间间隔均匀抽取 16帧。\\n\\n## 多图像输入\\n\\nAPI 可以支持接受和处理多个图像输入,这些图像可以通过图片可访问 URL 或图片转为 Base64 编码后输入,模型将结合所有传入的图像中的信息来回答问题。\\n\\n```\\n\\n import os\\n# 通过 pip install volcengine-python-sdk[ark] 安装方舟SDK\\nfrom volcenginesdkarkruntime import Ark\\n\\n# 从环境变量中获取API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n\\nresponse = client.chat.completions.create(\\n # 替换 <MODEL> 为模型的Model ID\\n model=\\\"<MODEL>\\\",\\n messages=[\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [ \\n {\\\"type\\\": \\\"image_url\\\",\\\"image_url\\\": {\\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/ark_demo_img_1.png\\\"}},\\n {\\\"type\\\": \\\"image_url\\\",\\\"image_url\\\": {\\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/ark_demo_img_2.png\\\"}},\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"支持输入是图片的模型系列是哪个?同时,豆包应用场景有哪些?\\\"},\\n ],\\n }\\n ],\\n)\\n\\nprint(response.choices[0])\\n\\n\\nPython\\n\\n\\n```\\n\\n## Base64 编码输入\\n\\n如果你要传入的图片/视频在本地,你可以将这个其转化为 Base64 编码,然后提交给大模型。下面是一个简单的示例代码。\\n\\n传入 Base64 编码格式时,请遵循以下规则:\\n\\n* 传入的是图片:\\n + 格式遵循`data:image/<图片格式>;base64,<Base64编码>`,其中,\\n - 图片格式:`jpeg`、`png`、`gif`等,支持的图片格式详细见[图片格式说明](/docs/82379/1362931#5f46bf24)。\\n - Base64 编码:图片的 Base64 编码。\\n* 传入的是视频:\\n + 格式遵循`data:video/<视频格式>;base64,<Base64编码>`,其中,\\n - 视频格式:`MP4`、`AVI`等,支持的视频格式详细见[视频格式说明](/docs/82379/1362931#ea7689ca)。\\n - Base64 编码:视频的 Base64 编码。\\n\\n```\\n\\n BASE64_IMAGE=$(base64 < path_to_your_image.jpeg) && curl http://ark.cn-beijing.volces.com/api/v3/chat/completions \\\\\\n -H \\\"Content-Type: application/json\\\" \\\\\\n -H \\\"Authorization: Bearer $ARK_API_KEY\\\" \\\\\\n -d @- <<EOF\\n {\\n \\\"model\\\": \\\"<MODEL>\\\",\\n \\\"messages\\\": [\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\n \\\"type\\\": \\\"image_url\\\",\\n \\\"image_url\\\": {\\n \\\"url\\\": \\\"data:image/jpeg;base64,$BASE64_IMAGE\\\"\\n }\\n },\\n {\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"图里有什么\\\"\\n }\\n ]\\n }\\n ],\\n \\\"max_tokens\\\": 300\\n }\\nEOF\\n\\n\\nShell\\n\\n\\n```\\n\\n```\\n\\n import base64\\nimport os\\n# 通过 pip install volcengine-python-sdk[ark] 安装方舟SDK\\nfrom volcenginesdkarkruntime import Ark\\n\\n# 初始化一个Client对象从环境变量中获取API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n\\n# 定义方法将指定路径图片转为Base64编码\\ndef encode_image(image_path):\\n with open(image_path, \\\"rb\\\") as image_file:\\n return base64.b64encode(image_file.read()).decode('utf-8')\\n\\n# 需要传给大模型的图片\\nimage_path = \\\"path_to_your_image.jpg\\\"\\n\\n# 将图片转为Base64编码\\nbase64_image = encode_image(image_path)\\n\\nresponse = client.chat.completions.create(\\n # 替换 <MODEL> 为模型的Model ID\\n model=\\\"<MODEL>\\\",\\n messages=[\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\n \\\"type\\\": \\\"image_url\\\",\\n \\\"image_url\\\": {\\n # 需要注意传入Base64编码前需要增加前缀 data:image/{图片格式};base64,{Base64编码}\\n # PNG图片\\\"url\\\": f\\\"data:image/png;base64,{base64_image}\\\"\\n # JPEG图片\\\"url\\\": f\\\"data:image/jpeg;base64,{base64_image}\\\"\\n # WEBP图片\\\"url\\\": f\\\"data:image/webp;base64,{base64_image}\\\"\\n \\\"url\\\": f\\\"data:image/<IMAGE_FORMAT>;base64,{base64_image}\\\"\\n }, \\n },\\n {\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"图里有什么\\\",\\n },\\n ],\\n }\\n ],\\n)\\n\\nprint(response.choices[0])\\n\\n\\nPython\\n\\n\\n```\\n\\n```\\n\\n package main\\n\\nimport (\\n \\\"context\\\"\\n \\\"encoding/base64\\\"\\n \\\"fmt\\\"\\n \\\"os\\\"\\n\\n \\\"github.com/volcengine/volcengine-go-sdk/service/arkruntime\\\"\\n \\\"github.com/volcengine/volcengine-go-sdk/service/arkruntime/model\\\"\\n)\\n\\nfunc main() {\\n // 读取本地图片文件\\n imageBytes, err := os.ReadFile(\\\"path_to_your_image.jpeg\\\") // 替换为实际图片路径\\n if err != nil {\\n fmt.Printf(\\\"读取图片失败: %v\\n\\\", err)\\n return\\n }\\n base64Image := base64.StdEncoding.EncodeToString(imageBytes)\\n\\n client := arkruntime.NewClientWithApiKey(\\n os.Getenv(\\\"ARK_API_KEY\\\"),\\n )\\n ctx := context.Background()\\n req := model.CreateChatCompletionRequest{\\n Model: \\\"doubao-seed-1-6-250615\\\",\\n Messages: []*model.ChatCompletionMessage{\\n {\\n Role: \\\"user\\\",\\n Content: &model.ChatCompletionMessageContent{\\n ListValue: []*model.ChatCompletionMessageContentPart{\\n {\\n Type: \\\"image_url\\\",\\n ImageURL: &model.ChatMessageImageURL{\\n URL: fmt.Sprintf(\\\"data:image/jpeg;base64,%s\\\", base64Image),\\n },\\n },\\n {\\n Type: \\\"text\\\",\\n Text: \\\"图片主要讲了什么?\\\",\\n },\\n },\\n },\\n },\\n },\\n }\\n\\n resp, err := client.CreateChatCompletion(ctx, req)\\n if err != nil {\\n fmt.Printf(\\\"standard chat error: %v\\n\\\", err)\\n return\\n }\\n fmt.Println(*resp.Choices[0].Message.Content.StringValue)\\n}\\n\\n\\nGo\\n\\n\\n```\\n\\n```\\n\\n package com.volcengine.ark.runtime;\\n\\nimport com.volcengine.ark.runtime.model.completion.chat.*;\\nimport com.volcengine.ark.runtime.model.completion.chat.ChatCompletionContentPart.*;\\nimport com.volcengine.ark.runtime.service.ArkService;\\nimport java.util.ArrayList;\\nimport java.util.List;\\nimport java.util.concurrent.TimeUnit;\\nimport okhttp3.ConnectionPool;\\nimport okhttp3.Dispatcher;\\nimport java.nio.file.Files;\\nimport java.nio.file.Path;\\nimport java.util.Base64;\\nimport java.io.IOException;\\n\\npublic class Sample {\\n static String apiKey = System.getenv(\\\"ARK_API_KEY\\\");\\n\\n\\n static ConnectionPool connectionPool = new ConnectionPool(5, 1, TimeUnit.SECONDS);\\n static Dispatcher dispatcher = new Dispatcher();\\n static ArkService service = ArkService.builder()\\n .dispatcher(dispatcher)\\n .connectionPool(connectionPool)\\n .apiKey(apiKey)\\n .build();\\n\\n // Base64编码方法\\n private static String encodeImage(String imagePath) throws IOException {\\n byte[] imageBytes = Files.readAllBytes(Path.of(imagePath));\\n return Base64.getEncoder().encodeToString(imageBytes);\\n }\\n\\n public static void main(String[] args) throws Exception {\\n\\n List<ChatMessage> messagesForReqList = new ArrayList<>();\\n\\n // 本地图片路径(替换为实际路径)\\n String imagePath = \\\"/Users/bytedance/workspace/ark_vlm/image/image.jpeg\\\";\\n\\n // 生成Base64数据URL\\n String base64Data = \\\"data:image/jpeg;base64,\\\" + encodeImage(imagePath);\\n\\n // 构建消息内容(修复内容部分构建方式)\\n List<ChatCompletionContentPart> contentParts = new ArrayList<>();\\n\\n // 图片部分使用builder模式\\n contentParts.add(ChatCompletionContentPart.builder()\\n .type(\\\"image_url\\\")\\n .imageUrl(new ChatCompletionContentPartImageURL(base64Data))\\n .build());\\n\\n // 文本部分使用builder模式\\n contentParts.add(ChatCompletionContentPart.builder()\\n .type(\\\"text\\\")\\n .text(\\\"图里有什么\\\")\\n .build());\\n\\n // 创建消息\\n messagesForReqList.add(ChatMessage.builder()\\n .role(ChatMessageRole.USER)\\n .multiContent(contentParts)\\n .build());\\n\\n ChatCompletionRequest req = ChatCompletionRequest.builder()\\n .model(\\\"<MODEL>\\\") //替换为需要使用的模型或者你的Endpoint ID\\n .messages(messagesForReqList)\\n .build();\\n\\n service.createChatCompletion(req)\\n .getChoices()\\n .forEach(choice -> System.out.println(choice.getMessage().getContent()));\\n // shutdown service after all requests is finished\\n service.shutdownExecutor();\\n }\\n}\\n\\n\\nJava\\n\\n\\n```\\n\\n## 控制图片理解的精细度\\n\\n控制图片理解的精细度指对画面的精细 **image\\\\_pixel\\\\_limit 、detail** 字段2个字段若同时配置则生效逻辑如下\\n\\n* 生效前提:图片像素范围在 [196, 3600万] px否则直接报错。\\n* 生效优先级:**image\\\\_pixel\\\\_limit** 高于 **detail** 字段,即同时配置 **detail** 与 **image\\\\_pixel\\\\_limit** 字段时,生效 **image\\\\_pixel\\\\_limit** 字段配置\\\\*\\\\*。\\\\*\\\\*\\n* 缺省时逻辑:**image\\\\_pixel\\\\_limit** 字段的 **min\\\\_pixels** / **max\\\\_pixels** 字段未设置,则使用 **detail** (默认值为`low`)设置配置的值对应的**min\\\\_pixels** 值 `3136` \\\\*\\\\*\\\\*\\\\* / **max\\\\_pixels** 值`1048576`。\\n\\n下面分别介绍如何通过 **detail** 、 **image\\\\_pixel\\\\_limit** 控制视觉理解的精度。\\n\\n### 通过 detail 字段(图片理解)\\n\\n你可以通过`detail`参数来控制模型理解图片的精细度返回速度token用量计费公式请参见[token 用量说明](/docs/82379/1362931#f9ea084e)。\\n\\n* `low`:“低分辨率”模式,默认此模式,处理速度会提高,适合图片本身细节较少或者只需要模型理解图片大致信息或者对速度有要求的场景。此时 **min\\\\_pixels** 取值`3136`、**max\\\\_pixels** 取值`1048576`超出此像素范围且小于3600w px的图片超出3600w px 会直接报错)将会等比例缩放至范围内。\\n* `high`:“高分辨率”模式,这代表模型会理解图片更多的细节,但是处理图片速度会降低,适合需要模型理解图像细节,图像细节丰富,需要关注图片细节的场景。此时 **min\\\\_pixels** 取值`3136`、**max\\\\_pixels** 取值`4014080`超出此像素范围且小于3600w px的图片超出3600w px 会直接报错)的图片将会等比例缩放至范围内。\\n\\n```\\n\\n import os\\n# 可通过 pip install volcengine-python-sdk[ark] 安装方舟SDK \\nfrom volcenginesdkarkruntime import Ark\\n\\n# 初始化一个Client对象从环境变量中获取API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n\\n# 调用 Ark 客户端的 chat.completions.create 方法创建聊天补全请求\\nresponse = client.chat.completions.create(\\n # 替换 <MODEL> 为模型的Model ID\\n model=\\\"<MODEL>\\\",\\n messages=[\\n {\\n # 消息角色为用户\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\n \\\"type\\\": \\\"image_url\\\",\\n # 第一张图片链接及细节设置为 high\\n \\\"image_url\\\": {\\n # 您可以替换图片链接为您的实际图片链接\\n \\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/ark_demo_img_1.png\\\",\\n \\\"detail\\\": \\\"high\\\"\\n }\\n },\\n # 文本类型的消息内容,询问图片里有什么\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"图片里有什么?\\\"},\\n ],\\n }\\n ],\\n)\\n\\nprint(response.choices[0])\\n\\n\\nPython\\n\\n\\n```\\n\\n### **通过 image\\\\_pixel\\\\_limit 结构体**\\n\\n控制传入给方舟的图像像素大小范围如果不在此范围则会等比例放大或者缩小至该范围内后传给模型进行理解。您可以通过 **image\\\\_pixel\\\\_limit** 结构体,精细控制模型可理解的图片像素多少。 \\n对应结构体如下\\n\\n```\\n\\n \\\"image_pixel_limit\\\": {\\n \\\"max_pixels\\\": 3014080, # 图片最大像素\\n \\\"min_pixels\\\": 3136 # 图片最小像素\\n}\\n\\n```\\n\\n```\\n\\n import os\\n# 可通过 pip install volcengine-python-sdk[ark] 安装方舟SDK \\nfrom volcenginesdkarkruntime import Ark\\n\\n# 初始化一个Client对象从环境变量中获取API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n\\n# 调用 Ark 客户端的 chat.completions.create 方法创建聊天补全请求\\nresponse = client.chat.completions.create(\\n # 替换 <MODEL> 为模型的Model ID\\n model=\\\"<MODEL>\\\",\\n messages=[\\n {\\n # 消息角色为用户\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\n \\\"type\\\": \\\"image_url\\\",\\n # 第一张图片链接及细节设置为 high\\n \\\"image_url\\\": {\\n # 您可以替换图片链接为您的实际图片链接\\n \\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/ark_demo_img_1.png\\\",\\n \\\"image_pixel_limit\\\": {\\n \\\"max_pixels\\\": 3014080,\\n \\\"min_pixels\\\": 3136,\\n },\\n }\\n },\\n # 文本类型的消息内容,询问图片里有什么\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"图片里有什么?\\\"},\\n ],\\n }\\n ],\\n)\\n\\nprint(response.choices[0])\\n\\n\\nPython\\n\\n\\n```\\n\\n## 控制视频理解的精细度\\n\\n> 当前支持视频理解的模型见[视觉理解能力](/docs/82379/1330310#ff5ef604),简单示例见 [快速开始](/docs/82379/1362931#18cf565a)\\n\\n您可通过 **fps** 字段控制从视频中抽取图像的频率默认为1即每秒从视频中抽取一帧图像输入给模型进行视觉理解。 可通过 **fps** 字段,控制模型对于视频中图像变化的敏感度。\\n\\n* 当视频画面变化剧烈或需关注画面变化,如计算视频中角色动作次数,可调高 **fps** 设置(最高 `5`),防止抽帧频率低导致误判。\\n* 当视频画面变化不频繁或无需关注画面变化,如画面中人数,可调低 **fps** (最低`0.2`),可提升处理速度,节省 token 用量。\\n\\n示例代码如下\\n\\n```\\n\\n import os\\n# 可通过 pip install volcengine-python-sdk[ark] 安装方舟SDK \\nfrom volcenginesdkarkruntime import Ark\\n\\n# 初始化一个Client对象从环境变量中获取API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n\\n# 调用 Ark 客户端的 chat.completions.create 方法创建聊天补全请求\\nresponse = client.chat.completions.create(\\n # 替换 <MODEL> 为模型的Model ID\\n model=\\\"<MODEL>\\\",\\n messages=[\\n {\\n # 消息角色为用户\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\n \\\"type\\\": \\\"video_url\\\",\\n # 第一张图片链接及细节设置为 high\\n \\\"video_url\\\": {\\n # 您可以替换图片链接为您的实际图片链接\\n \\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_video/ark_vlm_video_input.mp4\\\",\\n \\\"fps\\\": 2, # 每秒截取2帧画面用于视频理解\\n }\\n },\\n # 文本类型的消息内容,询问图片里有什么\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"视频里有什么?\\\"},\\n ],\\n }\\n ],\\n)\\n\\nprint(response.choices[0])\\n\\n\\nPython\\n\\n\\n```\\n\\n## 感知视频时序\\n\\n视频理解可理解视频时间和图像关系信息如回答事件发生什么时间点在哪些时间发生了某事件等和时间相关的信息原理见 [附1. 视频理解时间戳拼接工作原理](/docs/82379/1362931#b5f696d3)。 \\n下面是简单示例代码\\n\\n```\\n\\n import os\\n# 通过 pip install volcengine-python-sdk[ark] 安装方舟SDK\\nfrom volcenginesdkarkruntime import Ark\\n\\n# 初始化Ark客户端从环境变量中读取您的API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n\\n# 创建一个对话请求\\nresponse = client.chat.completions.create(\\n # 指定您部署了视觉理解大模型的推理接入点ID或者Model ID\\n model=\\\"<MODEL>\\\",\\n messages = [\\n {\\n # 指定消息的角色为用户\\n \\\"role\\\": \\\"user\\\", \\n \\\"content\\\": [ \\n {\\n \\\"type\\\": \\\"video_url\\\",\\n \\\"video_url\\\": {\\n # 您可以替换链接为您的实际视频链接\\n \\\"url\\\": \\\"https://p9-arcosite.byteimg.com/tos-cn-i-goo7wpa0wc/ea543baf50134fe0be5ceb7031e544e1~tplv-goo7wpa0wc-image.image\\\",\\n \\\"fps\\\":5,\\n },\\n },\\n {\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"裁判什么时间点出现的?\\\",\\n },\\n ],\\n }\\n ],\\n)\\n\\nprint(response.choices[0].message.content)\\n\\n\\nPython\\n\\n\\n```\\n\\n```\\n\\n 根据视频描述,裁判在**3.7秒**左右出现。此时画面中两位拳击手左为黑T恤红短裤、右为白T恤黑短裤原本处于对峙状态随后裁判穿着黑色西装、戴白手套站到两人中间似乎在准备开始比赛或暂停当前回合观众仍在背景中欢呼。\\n\\n\\nPlain\\n\\n\\n```\\n\\n## 使用BotChatCompletions接口\\n\\n* 配置应用请参见:\\n + [1.1 创建模型推理接入点](/docs/82379/1267885#_1-1-%E5%88%9B%E5%BB%BA%E6%A8%A1%E5%9E%8B%E6%8E%A8%E7%90%86%E6%8E%A5%E5%85%A5%E7%82%B9)。\\n + [2. 零代码智能体创建](/docs/82379/1267885#_2-%E9%9B%B6%E4%BB%A3%E7%A0%81%E6%99%BA%E8%83%BD%E4%BD%93%E5%88%9B%E5%BB%BA)。\\n\\n示例代码如下\\n\\n```\\n\\n import os\\nfrom volcenginesdkarkruntime import Ark\\n\\nclient = Ark(\\n api_key=os.environ.get(\\\"ARK_API_KEY\\\"),\\n)\\n\\nprint(\\\"----- standard request -----\\\")\\ncompletion = client.bot_chat.completions.create(\\n model=\\\"<YOUR_BOT_ID>\\\",\\n messages = [\\n {\\n \\\"role\\\": \\\"user\\\", # 指定消息的角色为用户\\n \\\"content\\\": [ # 消息内容列表 \\n {\\n \\\"type\\\": \\\"image_url\\\", # 图片消息\\n # 图片的URL需要大模型进行理解的图片链接\\n \\\"image_url\\\": {\\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/ark_demo_img_1.png\\\"}\\n },\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"支持输入是图片的模型系列是哪个?\\\"}, # 文本消息\\n ],\\n }\\n ],\\n)\\nprint(completion.choices[0].message.content)\\nprint(completion.references)\\n\\n```\\n\\n## 图文混排\\n\\n支持灵活地传入提示词和图片信息的方式您可以任意调整传图图片和文本的顺序以及在`system message`或者`User message`传入图文信息。模型会根据顺序返回处理信息的结果,示例如下。\\n\\n```\\n\\n import os\\n# 安装&升级SDK https://www.volcengine.com/docs/82379/1541595\\nfrom volcenginesdkarkruntime import Ark\\n\\n# 初始化Ark客户端从环境变量中读取您的API Key\\nclient = Ark(\\n api_key=os.getenv('ARK_API_KEY'),\\n )\\n# 创建一个对话请求\\nresponse = client.chat.completions.create(\\n # 替换 <MODEL> 为模型的Model ID\\n model=\\\"<MODEL>\\\",\\n messages=[\\n {\\n \\\"role\\\": \\\"system\\\",\\n \\\"content\\\": [\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"下面人物是目标人物\\\"},\\n {\\n \\\"type\\\": \\\"image_url\\\",\\n \\\"image_url\\\": {\\n \\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/target.png\\\"\\n },\\n },\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"请确认下面图片中是否含有目标人物\\\"},\\n ],\\n },\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"图片1中是否含有目标人物\\\"},\\n {\\n \\\"type\\\": \\\"image_url\\\",\\n \\\"image_url\\\": {\\n \\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/scene_01.png\\\"\\n },\\n },\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"图片2中是否含有目标人物\\\"},\\n {\\n \\\"type\\\": \\\"image_url\\\",\\n \\\"image_url\\\": {\\n \\\"url\\\": \\\"https://ark-project.tos-cn-beijing.volces.com/doc_image/scene_02.png\\\"\\n },\\n },\\n \\n ],\\n },\\n ],\\n)\\n\\nprint(response.choices[0].message.content)\\n\\n\\nPython\\n\\n\\n```\\n\\n注意\\n\\n## 视觉定位Visual Grounding\\n\\n请参见教程 [视觉定位 Grounding](/docs/82379/1616136)。\\n\\n## GUI任务处理\\n\\n请参见教程 [GUI 任务处理](/docs/82379/1584296)。\\n\\ndoubao-1-5-vision-pro-250328 模型支持使用以下System Prompt开启深度思考模型并获得最佳效果。\\n\\n```\\n\\n You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think>here answer\\n\\n\\nPlain\\n\\n\\n```\\n\\n通过System Prompt开启思考模型时思考内容不会通过response中的reasoning\\\\_content字段输出。思考内容与回答内容均通过response中的content字段输出。 \\n例如\\n\\n```\\n\\n <think>\\n思考内容\\n</think>\\n回答内容\\n\\n\\nPlain\\n\\n\\n```\\n\\n```\\n\\n <think>\\n好现在用户需要详细描述四张图片并分类。先看第一张广阔草原远景山脉森林中景草地颜色渐变近景小黑点可能动物或人。自然景观侧重地形植被——判断为自然风景类。\\n\\n第二张猴子特写手持食物周围绿叶红花。主体动物与植物互动环境有蓝天。虽有植物但主体是动物行为——动物类。\\n\\n第三张松鼠在树枝啃食东西茂密树叶。主体野生动物栖息状态自然环境但聚焦动物——动物类。\\n\\n第四张狗在砖墙建筑遗迹背景。动物与人工建筑砖墙结合但主体是动物状态但砖墙属人文元素。不过分类可能看主体若动物为主则动物类若强调建筑与动物互动但通常第四张狗是主体砖墙背景。但再检查\\n\\n分类逻辑自然风景无动物主体纯景观、动物主体动物、人文但第四张砖墙是人造结构但图片主体是狗。看示例分类比如第一张纯风景后三张主体动物。但第四张狗在古迹不过用户给的例子可能分自然风景、动物。检查第四张描述狗躺砖墙砖墙是背景主体动物。所以分类\\n\\n图1自然风景草原山脉\\n\\n图2、3、4动物猴子、松鼠、狗\\n\\n描述时详细刻画元素图1的色彩层次黄绿草地、深绿森林、山脉轮廓图2猴子动作手持食物、树叶花朵衬托图3松鼠姿态树枝位置、啃食细节图4狗的表情放松与砖墙质感古老。\\n</think>\\n### 图片1草原山脉景观 \\n**描述**:画面展现开阔的自然景观。前景是大片**黄绿渐变的草地**,中景有几处小黑点(可能是动物或行人),中远景是**起伏的山脉**,山坡覆盖着茂密的**深绿色森林**,与浅绿色草坡形成层次。天空清澈,点缀几缕白云。整体氛围宁静,展现了**草原、森林、山脉**的自然壮美。 \\n**分类****自然风景类**(无动物主体,以地形、植被、天空构成纯自然景观)。\\n\\n### 图片2猴子进食 \\n**描述**:主体是一只**猴子**,坐在木质结构上,双手捧食物(可能是水果)。猴子毛发呈灰褐色,面部细节清晰。周围有**绿色树叶**和**鲜艳的红色花朵**(如三角梅),背景是淡蓝色天空。画面聚焦动物行为,通过植物衬托自然生境。 \\n**分类****动物类**(主体为野生动物,展现其觅食行为)。\\n\\n### 图片3松鼠栖息 \\n**描述**:一只**松鼠**倒挂在树枝上,啃食手中的食物。松鼠毛色棕黑相间,尾巴蓬松。背景是**茂密的绿叶**,树干纹理粗糙,光线明亮。画面捕捉动物的动态瞬间,突出其与树木(栖息地)的关系。 \\n**分类****动物类**(主体为野生动物,展现其栖息习性)。\\n\\n### 图片4犬类休憩 \\n**描述**:一只**黑白相间的狗**趴在**古老的砖墙**上,砖墙由红褐色石块堆砌,表面斑驳(可能是历史遗迹)。狗神态放松,张嘴露舌,背景简洁。画面结合**动物**与**人造建筑**,但主体是动物的状态。 \\n**分类****动物类**(尽管背景含人文元素,核心主体是动物)。\\n\\n\\n### 总结分类 \\n- **自然风景**图1纯自然地貌无动物主体。 \\n- **动物类**图2猴子、图3松鼠、图4——均以动物为视觉焦点展现其行为或状态。 \\n\\n若严格区分“动物 vs. 动物+人文”图4可商榷但通常摄影分类中“动物类”允许背景含环境元素除非建筑占绝对主导。此组图中动物仍是图4的视觉中心。\\n\\n\\nPlain\\n\\n\\n```\\n\\n下面介绍具体场景的应用案例包括数据处理以及模型调用等端到端的案例。 \\n处理图片通常会与网络存储结合起来使用下面介绍如何结合对象存储 TOS来实现完整的图片处理流程。\\n\\n## 代码流程\\n\\n1. 压缩图片。分辨率会影响 token 消耗数量,可以通过图片压缩,来节省网络、存储以及模型分析成本。\\n2. 将压缩后的图片上传至对象存储 TOS并为图片生成预签名 URL。\\n\\n> 其中调用TOS需要使用Access Key获取Access Key 请参见[Access Key 签名鉴权](/docs/82379/1298459#21bff83b)。\\n\\n3. 调用视觉理解大模型分析图片。\\n\\n## 示例代码\\n\\n1. ```\\n\\n pip install -r requirements.txt\\n\\n\\n Shell\\n\\n\\n ```\\n\\n `requirements.txt`文本内容如下:\\n\\n ```\\n\\n Pillow\\n volcengine-python-sdk[ark]\\n tos\\n\\n\\n Shell\\n\\n\\n ```\\n2. ```\\n\\n import os\\n import tos\\n from PIL import Image\\n from tos import HttpMethodType\\n from volcenginesdkarkruntime import Ark\\n\\n # 从环境变量获取 Access Key/API Key信息\\n ak = os.getenv('VOLC_ACCESSKEY')\\n sk = os.getenv('VOLC_SECRETKEY')\\n api_key = os.getenv('ARK_API_KEY')\\n # 配置视觉理解模型的 Model ID\\n model_id = '<MODEL>'\\n\\n # 压缩前图片\\n original_file = \\\"original_image.jpeg\\\"\\n # 压缩后图片存放路径\\n compressed_file = \\\"compressed_image.jpeg\\\"\\n # 压缩的目标图片大小300KB\\n target_size = 300 * 1024\\n\\n # endpoint 和 region 填写Bucket 所在区域对应的Endpoint。\\n # 以华北2(北京)为例region 填写 cn-beijing。\\n # 公网域名endpoint 填写 tos-cn-beijing.volces.com\\n endpoint, region = \\\"tos-cn-beijing.volces.com\\\", \\\"cn-beijing\\\"\\n # 对象桶名称\\n bucket_name = \\\"demo-bucket-test\\\"\\n # 对象名称,例如 images 下的 compressed_image.jpeg 文件,则填写为 images/compressed_image.jpeg\\n object_key = \\\"images/compressed_image.jpeg\\\"\\n\\n def compress_image(input_path, output_path):\\n img = Image.open(input_path)\\n current_size = os.path.getsize(input_path)\\n\\n # 粗略的估计压缩质量,也可以从常量开始,逐步减小压缩质量,直到文件大小小于目标大小\\n image_quality = int(float(target_size / current_size) * 100)\\n img.save(output_path, optimize=True, quality=int(float(target_size / current_size) * 100))\\n\\n # 如果压缩后文件大小仍然大于目标大小,则继续压缩\\n # 压缩质量递减,直到文件大小小于目标大小\\n while os.path.getsize(output_path) > target_size:\\n img = Image.open(output_path)\\n image_quality -= 10\\n if image_quality <= 0:\\n break\\n img.save(output_path, optimize=True, quality=image_quality)\\n return image_quality\\n\\n def upload_tos(filename, tos_endpoint, tos_region, tos_bucket_name, tos_object_key):\\n # 创建 TosClientV2 对象,对桶和对象的操作都通过 TosClientV2 实现\\n tos_client, inner_tos_client = tos.TosClientV2(ak, sk, tos_endpoint, tos_region), tos.TosClientV2(ak, sk,\\n tos_endpoint,\\n tos_region)\\n try:\\n # 将本地文件上传到目标桶中, filename为本地压缩后图片的完整路径\\n tos_client.put_object_from_file(tos_bucket_name, tos_object_key, filename)\\n # 获取上传后预签名的 url\\n return inner_tos_client.pre_signed_url(HttpMethodType.Http_Method_Get, tos_bucket_name, tos_object_key)\\n except Exception as e:\\n if isinstance(e, tos.exceptions.TosClientError):\\n # 操作失败,捕获客户端异常,一般情况为非法请求参数或网络异常\\n print('fail with client error, message:{}, cause: {}'.format(e.message, e.cause))\\n elif isinstance(e, tos.exceptions.TosServerError):\\n # 操作失败,捕获服务端异常,可从返回信息中获取详细错误信息\\n print('fail with server error, code: {}'.format(e.code))\\n # request id 可定位具体问题,强烈建议日志中保存\\n print('error with request id: {}'.format(e.request_id))\\n print('error with message: {}'.format(e.message))\\n print('error with http code: {}'.format(e.status_code))\\n else:\\n print('fail with unknown error: {}'.format(e))\\n raise e\\n\\n\\n if __name__ == \\\"__main__\\\":\\n print(\\\"----- 压缩图片 -----\\\")\\n quality = compress_image(original_file, compressed_file)\\n print(\\\"Compressed Image Quality: {}\\\".format(quality))\\n\\n print(\\\"----- 上传至TOS -----\\\")\\n pre_signed_url_output = upload_tos(compressed_file, endpoint, region, bucket_name, object_key)\\n print(\\\"Pre-signed TOS URL: {}\\\".format(pre_signed_url_output.signed_url))\\n\\n print(\\\"----- 传入图片调用视觉理解模型 -----\\\")\\n client = Ark(api_key=api_key)\\n\\n # 图片输入:\\n response = client.chat.completions.create(\\n # 配置推理接入点\\n model=model_id,\\n messages=[\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [ \\n {\\n \\\"type\\\": \\\"image_url\\\",\\n \\\"image_url\\\": {\\n \\\"url\\\": pre_signed_url_output.signed_url\\n }\\n },\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"Which is the most secure payment app according to Americans?\\\"},\\n ],\\n }\\n ],\\n )\\n\\n print(response.choices[0])\\n\\n\\n Python\\n\\n\\n ```\\n\\n1. 安装GO SDK。\\n * TOS GO SDK 安装请参见[文档](https://www.volcengine.com/docs/6349/93476)。\\n * ARK JAVA SDK 安装请参见[文档](https://www.volcengine.com/docs/82379/1541595)。\\n2. 示例代码如下。\\n\\n```\\n\\n package main\\n\\nimport (\\n \\\"context\\\"\\n \\\"fmt\\\"\\n \\\"image\\\"\\n \\\"image/jpeg\\\"\\n \\\"os\\\"\\n\\n \\\"github.com/volcengine/ve-tos-golang-sdk/v2/tos\\\"\\n \\\"github.com/volcengine/ve-tos-golang-sdk/v2/tos/enum\\\"\\n \\\"github.com/volcengine/volcengine-go-sdk/service/arkruntime\\\"\\n \\\"github.com/volcengine/volcengine-go-sdk/service/arkruntime/model\\\"\\n)\\n\\nconst (\\n targetSize = int64(300 * 1024) // 300KB\\n originalImageFile = \\\"original_image.jpeg\\\" // 压缩前图片路径\\n compressedImageFile = \\\"compressed_image.jpeg\\\" // 压缩后图片存放路径\\n ep_id = \\\"ep-****-***\\\" //配置你部署了视觉理解模型的推理接入点 Endpoint ID\\n ep_id = \\\"<MODEL>\\\" //配置视觉理解模型的 Model ID\\n // Bucket 对应的 Endpoint以华北2北京为例\\n // 公网域名地址https://tos-cn-beijing.volces.com\\n endpoint, region = \\\"https://tos-cn-beijing.volces.com\\\", \\\"cn-beijing\\\"\\n // 填写 对象存储BucketName\\n bucketName = \\\"*** Provide your bucket name ***\\\"\\n // 将文件上传到 images 目录下的 compressed_image.jpeg 文件\\n objectKey = \\\"images/compressed_image.jpeg\\\"\\n)\\n\\nvar (\\n accessKey = os.Getenv(\\\"VOLC_ACCESSKEY\\\")\\n secretKey = os.Getenv(\\\"VOLC_SECRETKEY\\\")\\n apiKey = os.Getenv(\\\"ARK_API_KEY\\\")\\n)\\n\\nfunc compressImage(inputPath, outputPath string, targetSize int64) (int, error) {\\n file, err := os.Open(inputPath)\\n if err != nil {\\n return -1, err\\n }\\n defer file.Close()\\n\\n img, _, err := image.Decode(file)\\n if err != nil {\\n return -1, err\\n }\\n\\n outputFile, err := os.Create(outputPath)\\n if err != nil {\\n return -1, err\\n }\\n defer outputFile.Close()\\n\\n originalImageInfo, err := file.Stat()\\n if err != nil {\\n return -1, err\\n }\\n quality := int(float64(targetSize) / float64(originalImageInfo.Size()) * 100)\\n\\n for {\\n err = jpeg.Encode(outputFile, img, &jpeg.Options{Quality: quality})\\n if err != nil {\\n return -1, err\\n }\\n\\n info, err := outputFile.Stat()\\n if err != nil {\\n return -1, err\\n }\\n\\n if info.Size() <= targetSize {\\n break\\n }\\n\\n quality -= 10\\n if quality <= 0 {\\n return -1, fmt.Errorf(\\\"无法压缩到目标大小\\\")\\n }\\n\\n outputFile.Close()\\n outputFile, err = os.Create(outputPath)\\n if err != nil {\\n return -1, err\\n }\\n }\\n\\n return quality, nil\\n}\\nfunc uploadTos(ctx context.Context, endpoint, region, bucketName, objectKey, filePath string) (*tos.PreSignedURLOutput, error) {\\n // 初始化客户端\\n client, err := tos.NewClientV2(endpoint, tos.WithRegion(region), tos.WithCredentials(tos.NewStaticCredentials(accessKey, secretKey)))\\n if err != nil {\\n return nil, err\\n }\\n\\n // 将压缩后的图片上传到tos\\n output, err := client.PutObjectFromFile(ctx, &tos.PutObjectFromFileInput{\\n PutObjectBasicInput: tos.PutObjectBasicInput{\\n Bucket: bucketName,\\n Key: objectKey,\\n },\\n FilePath: filePath,\\n })\\n if err != nil {\\n return nil, err\\n }\\n fmt.Println(\\\"PutObjectV2 Request ID:\\\", output.RequestID)\\n\\n // 获取预签名下载链接\\n innerClient, err := tos.NewClientV2(endpoint, tos.WithRegion(region), tos.WithCredentials(tos.NewStaticCredentials(accessKey, secretKey)))\\n if err != nil {\\n return nil, err\\n }\\n return innerClient.PreSignedURL(&tos.PreSignedURLInput{\\n HTTPMethod: enum.HttpMethodGet,\\n Bucket: bucketName,\\n Key: objectKey,\\n })\\n}\\n\\nfunc main() {\\n ctx := context.Background()\\n\\n fmt.Println(\\\"----- Compress Image -----\\\")\\n quality, err := compressImage(originalImageFile, compressedImageFile, targetSize)\\n if err != nil {\\n panic(err)\\n }\\n\\n fmt.Println(\\\"Compressed Image Quality:\\\", quality)\\n\\n fmt.Println(\\\"----- Upload Image To TOS -----\\\")\\n preSignedUrl, err := uploadTos(ctx, endpoint, region, bucketName, objectKey, compressedImageFile)\\n if err != nil {\\n return\\n }\\n fmt.Println(\\\"PreSignedUrl:\\\", preSignedUrl.SignedUrl)\\n\\n fmt.Println(\\\"----- Image Input Chat -----\\\")\\n client := arkruntime.NewClientWithApiKey(apiKey)\\n req := model.CreateChatCompletionRequest{\\n Model: ep_id,\\n Messages: []*model.ChatCompletionMessage{\\n {\\n Role: model.ChatMessageRoleUser,\\n Content: &model.ChatCompletionMessageContent{\\n ListValue: []*model.ChatCompletionMessageContentPart{ \\n {\\n Type: model.ChatCompletionMessageContentPartTypeImageURL,\\n ImageURL: &model.ChatMessageImageURL{\\n URL: preSignedUrl.SignedUrl,\\n },\\n },\\n {\\n Type: model.ChatCompletionMessageContentPartTypeText,\\n Text: \\\"Which is the most secure payment app according to Americans?\\\",\\n },\\n },\\n },\\n },\\n },\\n }\\n\\n resp, err := client.CreateChatCompletion(ctx, req)\\n if err != nil {\\n fmt.Printf(\\\"standard chat error: %v\\n\\\", err)\\n return\\n }\\n fmt.Println(*resp.Choices[0].Message.Content.StringValue)\\n}\\n\\n\\nGo\\n\\n\\n```\\n\\n1. 安装Java SDK。\\n * TOS JAVA SDK 安装请参见[文档](https://www.volcengine.com/docs/6349/93481)。\\n * ARK JAVA SDK 安装请参见[文档](https://www.volcengine.com/docs/82379/1541595)。\\n2. 示例代码如下。\\n\\n```\\n\\n package com.volcengine.ark.runtime;\\n\\nimport com.volcengine.ark.runtime.model.completion.chat.ChatCompletionContentPart;\\nimport com.volcengine.ark.runtime.model.completion.chat.ChatMessage;\\nimport com.volcengine.ark.runtime.model.completion.chat.ChatMessageRole;\\nimport com.volcengine.ark.runtime.service.ArkService;\\nimport com.volcengine.tos.TOSV2;\\nimport com.volcengine.tos.TOSV2ClientBuilder;\\nimport com.volcengine.tos.TosClientException;\\nimport com.volcengine.tos.TosServerException;\\nimport com.volcengine.tos.comm.HttpMethod;\\nimport com.volcengine.tos.model.object.PreSignedURLInput;\\nimport com.volcengine.tos.model.object.PreSignedURLOutput;\\nimport com.volcengine.tos.model.object.PutObjectInput;\\nimport com.volcengine.tos.model.object.PutObjectOutput;\\nimport com.volcengine.ark.runtime.model.completion.chat.ChatCompletionRequest;\\n\\nimport javax.imageio.ImageIO;\\nimport javax.imageio.ImageWriteParam;\\nimport javax.imageio.ImageWriter;\\nimport javax.imageio.stream.ImageOutputStream;\\nimport java.awt.image.BufferedImage;\\nimport java.io.File;\\nimport java.io.FileInputStream;\\nimport java.io.IOException;\\nimport java.io.OutputStream;\\nimport java.util.ArrayList;\\nimport java.util.List;\\n\\npublic class VLMChatExample {\\n\\n private static final String TOS_ENDPOINT = \\\"https://tos-cn-beijing.volces.com\\\";\\n private static final String REGION = \\\"cn-beijing\\\";\\n private static final String ARK_API_KEY = System.getenv(\\\"ARK_API_KEY\\\");\\n private static final String VOLC_ACCESSKEY = System.getenv(\\\"VOLC_ACCESSKEY\\\");\\n private static final String VOLC_SECRETKEY = System.getenv(\\\"VOLC_SECRETKEY\\\");\\n private static final long TOS_EXPIRE_TIME = 3600;\\n\\n public static void compressImage(String inputImagePath, String outputImagePath, long targetSizeInBytes) throws IOException {\\n File inputFile = new File(inputImagePath);\\n BufferedImage img = ImageIO.read(inputFile);\\n float quality = targetSizeInBytes * 1.0f / inputFile.length();\\n try (ImageOutputStream ios = ImageIO.createImageOutputStream(new File(outputImagePath))) {\\n ImageWriter writer = ImageIO.getImageWritersByFormatName(\\\"jpeg\\\").next();\\n ImageWriteParam param = writer.getDefaultWriteParam();\\n param.setCompressionMode(ImageWriteParam.MODE_EXPLICIT);\\n param.setCompressionQuality(quality);\\n writer.setOutput(ios);\\n writer.write(null, new javax.imageio.IIOImage(img, null, null), param);\\n writer.dispose();\\n }\\n }\\n\\n public static void uploadImageToTOS(String filePath, String bucketName, String objectKey) throws Throwable {\\n\\n TOSV2 tos = new TOSV2ClientBuilder().build(REGION, TOS_ENDPOINT, VOLC_ACCESSKEY, VOLC_SECRETKEY);\\n\\n // step 1. 上传本地图片到tos\\n File file = new File(filePath);\\n try (FileInputStream inputStream = new FileInputStream(file)) {\\n PutObjectInput putObjectInput = new PutObjectInput().setBucket(bucketName)\\n .setKey(objectKey).setContent(inputStream).setContentLength(file.length());\\n PutObjectOutput output = tos.putObject(putObjectInput);\\n System.out.println(\\\"putObject succeed, object's etag is \\\" + output.getEtag());\\n System.out.println(\\\"putObject succeed, object's crc64 is \\\" + output.getHashCrc64ecma());\\n } catch (IOException e) {\\n System.out.println(\\\"putObject read file failed\\\");\\n e.printStackTrace();\\n throw e;\\n } catch (TosClientException e) {\\n // 操作失败,捕获客户端异常,一般情况是请求参数错误,此时请求并未发送\\n System.out.println(\\\"putObject failed\\\");\\n System.out.println(\\\"Message: \\\" + e.getMessage());\\n if (e.getCause() != null) {\\n e.getCause().printStackTrace();\\n }\\n throw e;\\n } catch (TosServerException e) {\\n // 操作失败,捕获服务端异常,可以获取到从服务端返回的详细错误信息\\n System.out.println(\\\"putObject failed\\\");\\n System.out.println(\\\"StatusCode: \\\" + e.getStatusCode());\\n System.out.println(\\\"Code: \\\" + e.getCode());\\n System.out.println(\\\"Message: \\\" + e.getMessage());\\n System.out.println(\\\"RequestID: \\\" + e.getRequestID());\\n throw e;\\n } catch (Throwable t) {\\n // 作为兜底捕获其他异常,一般不会执行到这里\\n System.out.println(\\\"putObject failed\\\");\\n System.out.println(\\\"unexpected exception, message: \\\" + t.getMessage());\\n throw t;\\n }\\n }\\n\\n public static String getPreSignedURL(String bucketName, String objectKey) throws Throwable {\\n\\n TOSV2 tos = new TOSV2ClientBuilder().build(REGION, TOS_ENDPOINT, VOLC_ACCESSKEY, VOLC_SECRETKEY);\\n\\n // 生成预签名链接\\n try {\\n PreSignedURLInput input = new PreSignedURLInput().setBucket(bucketName).setKey(objectKey)\\n .setHttpMethod(HttpMethod.GET).setExpires(TOS_EXPIRE_TIME);\\n PreSignedURLOutput output = tos.preSignedURL(input);\\n System.out.println(\\\"preSignedURL succeed, the signed url is \\\" + output.getSignedUrl());\\n System.out.println(\\\"preSignedURL succeed, the signed header is \\\" + output.getSignedHeader());\\n return output.getSignedUrl();\\n } catch (TosClientException e) {\\n // 操作失败,捕获客户端异常,一般情况是请求参数错误,此时请求并未发送\\n System.out.println(\\\"preSignedURL failed\\\");\\n System.out.println(\\\"Message: \\\" + e.getMessage());\\n if (e.getCause() != null) {\\n e.getCause().printStackTrace();\\n }\\n throw e;\\n } catch (Throwable t) {\\n // 作为兜底捕获其他异常,一般不会执行到这里\\n System.out.println(\\\"preSignedURL failed\\\");\\n System.out.println(\\\"unexpected exception, message: \\\" + t.getMessage());\\n throw t;\\n }\\n }\\n\\n public static void main(String[] args) throws Throwable {\\n String filePath = \\\"/your/path/to/your/image.jpeg\\\";\\n String compressedPath = \\\"/your/path/to/compress/image.jpeg\\\";\\n String tosBucket = \\\"{your bucket name}\\\";\\n // 您上传图片至存储桶的路径及名称例如上传文件至tos的 images 下并命名为 compressed_image.jpeg 文件,则填写为 images/compressed_image.jpeg\\n String objectKey = \\\"{your object key}\\\";\\n // 1. 压缩图片\\n try {\\n compressImage(filePath, compressedPath, 300 * 1024);\\n } catch (IOException e) {\\n System.out.println(\\\"compressImage failed\\\");\\n e.printStackTrace();\\n throw e;\\n }\\n // 2. 上传TOS\\n try {\\n uploadImageToTOS(compressedPath, tosBucket, objectKey);\\n } catch (Throwable t) {\\n System.out.println(\\\"uploadImageToTOS failed\\\");\\n t.printStackTrace();\\n throw t;\\n }\\n // 3. 生成预签名链接\\n String preSignedURL = \\\"\\\";\\n try {\\n preSignedURL = getPreSignedURL(tosBucket, objectKey);\\n } catch (Throwable t) {\\n System.out.println(\\\"getPreSignedURL failed\\\");\\n t.printStackTrace();\\n throw t;\\n }\\n\\n // 4. 调用大模型Chat\\n ArkService service = new ArkService(ARK_API_KEY);\\n\\n System.out.println(\\\"----- image input -----\\\");\\n final List<ChatMessage> messages = new ArrayList<>();\\n final List<ChatCompletionContentPart> multiParts = new ArrayList<>();\\n multiParts.add(ChatCompletionContentPart.builder().type(\\\"image_url\\\").imageUrl(\\n new ChatCompletionContentPart.ChatCompletionContentPartImageURL(preSignedURL)\\n ).build());\\n multiParts.add(ChatCompletionContentPart.builder().type(\\\"text\\\").text(\\n \\\"Which is the most secure payment app according to Americans?\\\"\\n ).build());\\n final ChatMessage userMessage = ChatMessage.builder().role(ChatMessageRole.USER)\\n .multiContent(multiParts).build();\\n messages.add(userMessage);\\n\\n ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()\\n .model(\\\"{your ark model endpoint id}\\\")\\n .messages(messages)\\n .build();\\n\\n service.createChatCompletion(chatCompletionRequest).getChoices().forEach(choice -> System.out.println(choice.getMessage().getContent()));\\n // shutdown service\\n service.shutdownExecutor();\\n }\\n}\\n\\n\\nJava\\n\\n\\n```\\n\\n* [对话(Chat) API](https://www.volcengine.com/docs/82379/1494384):视觉理解 API 参数说明,调用模型的视觉理解能力,模型调用中出现错误,可参考视觉理解 API 参数说明。\\n\\n常见问题\\n\\n附1. 视频理解时间戳拼接工作原理\\n\\n视频处理的核心方式为 “帧与时间戳的结构化拼接”,具体规则如下:\\n\\n* 对视频抽帧得到的每帧图像,在其前插入时间戳文本,格式为 `[<时间戳> second]`。\\n* 拼接后形成“时间戳+图像”的有序序列,模型通过该序列理解视频的时序逻辑和内容变化。\\n\\n## 抽帧逻辑举例\\n\\n| | FPS 1 | FPS 0.5 | FPS 2 |\\n| --- | --- | --- | --- |\\n| | [0.0 second] | [0.0 second] | [0.0 second] |\\n| | | `<IMAGE>` | `<IMAGE>` |\\n| 时间戳 | [1.0 second] | [2.0 second] | [0.5 second] |\\n| 视频帧 | `<IMAGE>` | `<IMAGE>` | `<IMAGE>` |\\n| 时间戳 | [2.0 second] | [4.0 second] | [1.0 second] |\\n| 视频帧 | `<IMAGE>` | `<IMAGE>` | `<IMAGE>` |\\n| 时间戳 | [3.0 second] | | [1.5 second] |\\n| 视频帧 | `<IMAGE>` | | `<IMAGE>` |\\n| 时间戳 | [4.0 second] | | [2.0 second] |\\n| 视频帧 | `<IMAGE>` | | `<IMAGE>` |\\n| 时间戳 | [5.0 second] | | [2.5 second] |\\n| 视频帧 | `<IMAGE>` | | `<IMAGE>` |\\n| 时间戳 | | | [3.0 second] |\\n| 视频帧 | | | `<IMAGE>` |\\n| 时间戳 | | | [3.5 second] |\\n| 视频帧 | | | `<IMAGE>` |\\n| 时间戳 | | | [4.0 second] |\\n| 视频帧 | | | `<IMAGE>` |\\n| 时间戳 | | | [4.5 second] |\\n| 视频帧 | | | `<IMAGE>` |\\n| 时间戳 | | | [5.0 second] |\\n| 视频帧 | | | `<IMAGE>` |\\n| | | | |\\n\\n## 多图请求等效\\n\\n```\\n\\n {\\n \\\"model\\\": \\\"doubao-seed-1-6-250615\\\",\\n \\\"messages\\\": [\\n {\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\n \\\"type\\\":\\\"text\\\",\\n \\\"text\\\":\\\"你觉得这个恐怖吗?\\\"\\n },\\n {\\n \\\"type\\\":\\\"text\\\",\\n \\\"text\\\":\\\"[0.0 second]\\\"\\n },\\n {\\n \\\"type\\\":\\\"image_url\\\",\\n \\\"image_url\\\":{\\n \\\"url\\\":\\\"https://ark-public.tos-cn-beijing.volces.com/80hou@0.jpg\\\"}\\n },\\n {\\n \\\"type\\\":\\\"text\\\",\\n \\\"text\\\":\\\"[1.0 second]\\\"\\n },\\n {\\n \\\"type\\\":\\\"image_url\\\",\\n \\\"image_url\\\":{\\n \\\"url\\\":\\\"https://ark-public.tos-cn-beijing.volces.com/80hou@1.jpg\\\"}\\n },\\n {\\n \\\"type\\\":\\\"text\\\",\\n \\\"text\\\":\\\"[2.0 second]\\\"\\n },\\n {\\n \\\"type\\\":\\\"image_url\\\",\\n \\\"image_url\\\":{\\n \\\"url\\\":\\\"https://ark-public.tos-cn-beijing.volces.com/80hou@2.jpg\\\"}\\n },\\n {\\n \\\"type\\\":\\\"text\\\",\\n \\\"text\\\":\\\"[3.0 second]\\\"\\n },\\n {\\n \\\"type\\\":\\\"image_url\\\",\\n \\\"image_url\\\":{\\n \\\"url\\\":\\\"https://ark-public.tos-cn-beijing.volces.com/80hou@3.jpg\\\"}\\n },\\n {\\n \\\"type\\\":\\\"text\\\",\\n \\\"text\\\":\\\"[4.0 second]\\\"\\n },\\n {\\n \\\"type\\\":\\\"image_url\\\",\\n \\\"image_url\\\":{\\n \\\"url\\\":\\\"https://ark-public.tos-cn-beijing.volces.com/80hou@4.jpg\\\"}\\n },\\n {\\n \\\"type\\\":\\\"text\\\",\\n \\\"text\\\":\\\"[5.0 second]\\\"\\n },\\n {\\n \\\"type\\\":\\\"image_url\\\",\\n \\\"image_url\\\":{\\n \\\"url\\\":\\\"https://ark-public.tos-cn-beijing.volces.com/80hou@5.jpg\\\"}\\n }\\n ]\\n }\\n ]\\n}\\n\\n\\nPlain\\n\\n\\n```\\n\\n[文本生成](/docs/82379/1399009)\\n[视觉定位 Grounding](/docs/82379/1616136)\\n==================================================\"}",
"timestamp": "2025-09-25T16:19:44.202042",
"tool_call_id": "extract_webpage:35",
"name": "extract_webpage"
},
{
"role": "assistant",
"content": "基于官方文档我来为你总结火山引擎豆包API视频分析支持的传入方式\n\n## 🎬 火山引擎豆包API视频传入方式\n\n### 📋 支持的视频格式\n| 格式 | 文件扩展名 | Content Type |\n|------|------------|--------------|\n| **MP4** | .mp4 | video/quicktime (URL) / video/mov (Base64) |\n\n### 🔗 传入方式\n\n#### 1. **URL方式**\n- 支持直接传入可访问的视频URL\n- 推荐使用火山引擎TOS对象存储获得更好性能\n- 需要设置正确的Content Type\n\n```json\n{\n \"type\": \"video_url\",\n \"video_url\": {\n \"url\": \"https://your-domain.com/video.mp4\"\n }\n}\n```\n\n#### 2. **Base64编码方式**\n- 支持本地视频文件Base64编码\n- 格式要求:`data:video/mov;base64,<Base64编码>`\n\n```json\n{\n \"type\": \"video_url\", \n \"video_url\": {\n \"url\": \"data:video/mov;base64,AAAAAAA...\"\n }\n}\n```\n\n### ⚙️ 重要参数配置\n\n#### **fps参数**(帧率控制)\n- **默认值**1.0每秒抽取1帧\n- **取值范围**0.2 - 5.0\n- **作用**:控制视频抽帧频率\n - 高fps如5适合动作变化剧烈的视频\n - 低fps如0.2适合静态场景节省token\n\n```json\n{\n \"video_url\": {\n \"url\": \"your_video_url\",\n \"fps\": 2.0 // 每秒抽取2帧\n }\n}\n```\n\n### 📊 技术限制\n\n#### **文件大小限制**\n- **最大50MB** 单个视频文件\n\n#### **Token消耗**\n- **范围**10k - 80k tokens\n- **影响因素**:视频时长 × fps\n- **最大帧数**640帧超出会均匀抽帧\n\n#### **处理机制**\n- 基于抽帧获取关键帧\n- 添加时间戳标记:`[<时间戳> second]`\n- 支持时序信息理解和事件时间点分析\n\n### 💡 最佳实践建议\n\n1. **网络存储优化**使用TOS获得更低延迟和成本\n2. **合理设置fps**:根据视频内容动态程度调整\n3. **文件大小控制**确保视频在50MB以内\n4. **格式标准化**使用MP4格式确保兼容性\n\n### 🔧 示例代码Python\n```python\nimport base64\n\n# Base64方式\nwith open(\"video.mp4\", \"rb\") as f:\n video_base64 = base64.b64encode(f.read()).decode('utf-8')\n\nvideo_data = f\"data:video/mov;base64,{video_base64}\"\n\n# URL方式 \nvideo_url = \"https://your-domain.com/video.mp4\"\n\n# API调用\npayload = {\n \"type\": \"video_url\",\n \"video_url\": {\n \"url\": video_data, # 或 video_url\n \"fps\": 1.0\n }\n}\n```\n\n这种设计既支持了灵活的视频输入方式又通过fps参数让用户可以平衡分析精度和成本。",
"timestamp": "2025-09-25T16:20:37.747791"
},
{
"role": "user",
"content": "那咱们来试一下我给你的项目里放了一个内网穿透工具这个test网址的东西都配置好了可以直接穿透使用你来给视频生成一个url然后使用url来请求豆包ai看看能不能分析",
"timestamp": "2025-09-25T16:27:27.711640"
},
{
"role": "assistant",
"content": "好的我来试试使用内网穿透工具来创建一个视频URL然后用豆包API进行分析。让我先查看一下内网穿透工具的配置。",
"timestamp": "2025-09-25T16:27:44.588486"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:27:44.603660",
"tool_calls": [
{
"id": "terminal_session:36",
"index": 0,
"type": "function",
"function": {
"name": "terminal_session",
"arguments": "{\"action\": \"open\", \"session_name\": \"frp_test\", \"working_dir\": \"内网穿透工具\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"frp_test\", \"working_dir\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/内网穿透工具\", \"shell\": \"/bin/zsh\", \"is_active\": true, \"total_sessions\": 1}",
"timestamp": "2025-09-25T16:27:46.414032",
"tool_call_id": "terminal_session:36",
"name": "terminal_session"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:28:00.454958",
"tool_calls": [
{
"id": "terminal_input:37",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"ls -la\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"frp_test\", \"command\": \"ls -la\", \"output\": \"total 27424\\ndrwxr-xr-x 5 jojo staff 160 Sep 25 16:23 .\\ndrwxrwxrwx@ 8 jojo staff 256 Sep 25 16:23 ..\\n-rwxr-xr-x@ 1 jojo staff 14029234 Mar 7 2025 frpc\\n-rw-r--r--@ 1 jojo staff 190 Sep 25 16:21 frpc.toml\\n-rw-r--r--@ 1 jojo staff 68 Apr 15 23:37 Untitled-1\\n\"}",
"timestamp": "2025-09-25T16:28:02.271216",
"tool_call_id": "terminal_input:37",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:28:06.290309",
"tool_calls": [
{
"id": "read_file:38",
"index": 0,
"type": "function",
"function": {
"name": "read_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/内网穿透工具/frpc.toml\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": false, \"requires_confirmation\": true, \"message\": \"\\u9605\\u8bfb\\u5de5\\u5177\\u53ea\\u80fd\\u7528\\u4e8e\\u9605\\u8bfb\\u5c0f\\u6587\\u4ef6\\u3001\\u4e34\\u65f6\\u6587\\u4ef6\\u3001\\u4e0d\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\u3002\\u5982\\u679c\\u8981\\u67e5\\u770b\\u6838\\u5fc3\\u6587\\u4ef6\\u3001\\u9700\\u8981\\u591a\\u6b21\\u4fee\\u6539\\u7684\\u6587\\u4ef6\\u3001\\u91cd\\u8981\\u7684\\u6587\\u4ef6\\uff0c\\u8bf7\\u4f7f\\u7528\\u805a\\u7126\\u529f\\u80fd\\u3002\\u8bf7\\u786e\\u8ba4\\u4f7f\\u7528\\u9605\\u8bfb\\u8fd8\\u662f\\u805a\\u7126\\uff1f\", \"instruction\": \"\\u8bf7\\u4f7f\\u7528 confirm_read_or_focus \\u5de5\\u5177\\u6765\\u9009\\u62e9\\u64cd\\u4f5c\\u65b9\\u5f0f\\uff0c\\u6587\\u4ef6\\u8def\\u5f84: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u5185\\u7f51\\u7a7f\\u900f\\u5de5\\u5177/frpc.toml\", \"file_path\": \"/Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u5185\\u7f51\\u7a7f\\u900f\\u5de5\\u5177/frpc.toml\"}",
"timestamp": "2025-09-25T16:28:08.103045",
"tool_call_id": "read_file:38",
"name": "read_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:28:19.401925",
"tool_calls": [
{
"id": "confirm_read_or_focus:39",
"index": 0,
"type": "function",
"function": {
"name": "confirm_read_or_focus",
"arguments": "{\"file_path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/内网穿透工具/frpc.toml\", \"choice\": \"read\", \"reason\": \"这是一个配置文件,我只需要临时查看内容了解配置,不需要频繁修改\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"action\": \"read\", \"result\": {\"success\": true, \"path\": \"\\u5185\\u7f51\\u7a7f\\u900f\\u5de5\\u5177/frpc.toml\", \"content\": \"serverAddr = \\\"cyjai.com\\\"\\nserverPort = 7000\\nauth.token = \\\"@CuiYuJian040618\\\"\\n\\n[[proxies]]\\nname = \\\"filed\\\"\\ntype = \\\"http\\\"\\nlocalIP = \\\"127.0.0.1\\\"\\nlocalPort = 8091\\ncustomDomains = [\\\"test.cyjai.com\\\"]\", \"size\": 190, \"content_preview\": \"serverAddr = \\\"cyjai.com\\\"\\nserverPort = 7000\\nauth.token = \\\"@CuiYuJian040618\\\"\\n\\n[[proxies]]\\nname = \\\"filed\\\"\\ntype = \\\"http\\\"\\nlocalIP = \\\"127.0.0.1\\\"\\nlocalPort = 8091\\ncustomDomains = [\\\"test.cyjai.com\\\"]\"}, \"message\": \"\\u5df2\\u4f7f\\u7528\\u8bfb\\u53d6\\u65b9\\u5f0f\\u67e5\\u770b\\u6587\\u4ef6: /Users/jojo/Desktop/agent_kimi_\\u6e90\\u7801\\u5907\\u4efd/project/\\u5185\\u7f51\\u7a7f\\u900f\\u5de5\\u5177/frpc.toml\"}",
"timestamp": "2025-09-25T16:28:21.217938",
"tool_call_id": "confirm_read_or_focus:39",
"name": "confirm_read_or_focus"
},
{
"role": "assistant",
"content": "很好!我看到内网穿透已经配置好了,域名是 `test.cyjai.com`,本地端口是 `8091`。现在让我启动一个本地HTTP服务器来提供视频文件然后通过内网穿透URL来访问。\n\n首先让我启动frp客户端",
"timestamp": "2025-09-25T16:28:41.067239"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:28:41.076593",
"tool_calls": [
{
"id": "terminal_input:40",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"./frpc -c frpc.toml &\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"frp_test\", \"command\": \"./frpc -c frpc.toml &\", \"output\": \"\\u001b[1;34m2025-09-25 16:28:42.259 [I] [sub/root.go:142] start frpc service for config file [frpc.toml]\\n\\u001b[0m\\u001b[1;34m2025-09-25 16:28:42.259 [I] [client/service.go:295] try to connect to server...\\n\\u001b[0m\\u001b[1;34m2025-09-25 16:28:42.556 [I] [client/service.go:287] [ae3db0317ba9a144] login to server success, get run id [ae3db0317ba9a144]\\n\\u001b[0m\\u001b[1;34m2025-09-25 16:28:42.556 [I] [proxy/proxy_manager.go:173] [ae3db0317ba9a144] proxy added: [filed]\\n\\u001b[0m\\u001b[1;34m2025-09-25 16:28:42.576 [I] [client/control.go:168] [ae3db0317ba9a144] [filed] start proxy success\\n\"}",
"timestamp": "2025-09-25T16:28:43.090749",
"tool_call_id": "terminal_input:40",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "太好了frp客户端启动成功。现在让我在另一个终端中启动HTTP服务器来提供视频文件",
"timestamp": "2025-09-25T16:28:48.813466"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:28:48.826009",
"tool_calls": [
{
"id": "terminal_session:41",
"index": 0,
"type": "function",
"function": {
"name": "terminal_session",
"arguments": "{\"action\": \"open\", \"session_name\": \"http_server\", \"working_dir\": \"视频分析\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"http_server\", \"working_dir\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/视频分析\", \"shell\": \"/bin/zsh\", \"is_active\": true, \"total_sessions\": 2}",
"timestamp": "2025-09-25T16:28:50.637489",
"tool_call_id": "terminal_session:41",
"name": "terminal_session"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:28:55.079276",
"tool_calls": [
{
"id": "terminal_input:42",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"python3 -m http.server 8091 &\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"http_server\", \"command\": \"python3 -m http.server 8091 &\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:29:00.404349",
"tool_call_id": "terminal_input:42",
"name": "terminal_input"
},
{
"role": "user",
"content": "我忘了给你说了,这个配置是配好的,但本地端口需要改",
"timestamp": "2025-09-25T16:29:21.086316"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:29:34.948861",
"tool_calls": [
{
"id": "terminal_input:43",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"pkill -f \\\"python3 -m http.server\\\"\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"http_server\", \"command\": \"pkill -f \\\"python3 -m http.server\\\"\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:29:40.266109",
"tool_call_id": "terminal_input:43",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:29:53.614708",
"tool_calls": [
{
"id": "terminal_input:44",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"ls -la *.mp4\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"http_server\", \"command\": \"ls -la *.mp4\", \"output\": \"-r--r--r--@ 1 jojo staff 5788383 Aug 29 10:30 04da4de9d2935e09408e4fefe55a0e14.mp4\\n-rw-r--r--@ 1 jojo staff 183014 Sep 25 16:10 simple_test.mp4\\n\"}",
"timestamp": "2025-09-25T16:29:55.427905",
"tool_call_id": "terminal_input:44",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "让我先修改frp配置换一个本地端口比如8080",
"timestamp": "2025-09-25T16:29:59.938570"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:29:59.954640",
"tool_calls": [
{
"id": "terminal_input:45",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"cd /Users/jojo/Desktop/agent_kimi_源码备份/project/内网穿透工具\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"http_server\", \"command\": \"cd /Users/jojo/Desktop/agent_kimi_源码备份/project/内网穿透工具\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:30:05.272568",
"tool_call_id": "terminal_input:45",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:30:10.700304",
"tool_calls": [
{
"id": "modify_file:46",
"index": 0,
"type": "function",
"function": {
"name": "modify_file",
"arguments": "{\"path\": \"/Users/jojo/Desktop/agent_kimi_源码备份/project/内网穿透工具/frpc.toml\", \"operation\": \"replace\", \"old_text\": \"localPort = 8091\", \"content\": \"localPort = 8080\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"内网穿透工具/frpc.toml\", \"size\": 190, \"mode\": \"w\", \"replacements\": 1}",
"timestamp": "2025-09-25T16:30:12.516983",
"tool_call_id": "modify_file:46",
"name": "modify_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:30:16.284201",
"tool_calls": [
{
"id": "terminal_input:47",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"pkill -f frpc\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"http_server\", \"command\": \"pkill -f frpc\", \"output\": \"\"}",
"timestamp": "2025-09-25T16:30:21.603435",
"tool_call_id": "terminal_input:47",
"name": "terminal_input"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-09-25T16:30:25.069829",
"tool_calls": [
{
"id": "terminal_input:48",
"index": 0,
"type": "function",
"function": {
"name": "terminal_input",
"arguments": "{\"command\": \"./frpc -c frpc.toml &\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"session\": \"http_server\", \"command\": \"./frpc -c frpc.toml &\", \"output\": \"\\u001b[1;34m2025-09-25 16:30:25.400 [I] [sub/root.go:142] start frpc service for config file [frpc.toml]\\n\\u001b[0m\\u001b[1;34m2025-09-25 16:30:25.400 [I] [client/service.go:295] try to connect to server...\\n\\u001b[0m\\u001b[1;34m2025-09-25 16:30:25.446 [I] [client/service.go:287] [3eafcd1f2fd32f4f] login to server success, get run id [3eafcd1f2fd32f4f]\\n\\u001b[0m\\u001b[1;34m2025-09-25 16:30:25.446 [I] [proxy/proxy_manager.go:173] [3eafcd1f2fd32f4f] proxy added: [filed]\\n\\u001b[0m\\u001b[1;34m2025-09-25 16:30:25.457 [I] [client/control.go:168] [3eafcd1f2fd32f4f] [filed] start proxy success\\n\"}",
"timestamp": "2025-09-25T16:30:26.878280",
"tool_call_id": "terminal_input:48",
"name": "terminal_input"
}
],
"metadata": {
"project_path": "/Users/jojo/Desktop/agent_kimi_源码备份/project",
"thinking_mode": true,
"total_messages": 124,
"total_tools": 98,
"status": "active"
},
"token_statistics": {
"total_input_tokens": 0,
"total_output_tokens": 0,
"updated_at": "2025-09-29T22:15:43.506126"
}
}