agent-Specialization/data/conversations/conv_20251008_195110_979.json
2025-11-14 16:44:12 +08:00

323 lines
20 KiB
JSON
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"id": "conv_20251008_195110_979",
"title": "搜索deepseekv3.1qwen2.5-maxkimi-k2gemini2.5pro的模型...",
"created_at": "2025-10-08T19:51:10.979871",
"updated_at": "2025-10-08T19:54:16.471919",
"messages": [
{
"role": "user",
"content": "搜索deepseekv3.1qwen2.5-maxkimi-k2gemini2.5pro的模型相关信息保证数据的准确性主要了解其性能做成一个精美的设计高级的带有可互动和方便对比的各种图表动画和互动效果精致高级的html页面",
"timestamp": "2025-10-08T19:51:13.840487"
},
{
"role": "assistant",
"content": "我来帮您搜索这些AI模型的相关信息然后创建一个精美的对比展示页面。",
"timestamp": "2025-10-08T19:51:16.920712"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:51:16.927006",
"tool_calls": [
{
"id": "web_search:0",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"query\": \"DeepSeek V3.1 AI model performance benchmarks specifications\", \"max_results\": 5}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: DeepSeek V3.1 AI model performance benchmarks specifications\\n📅 搜索时间: 2025-10-08T19:51:22.879696\\n\\n📝 AI摘要:\\nDeepSeek V3.1 is a hybrid AI model with fast reasoning and 128K context. It supports both thinking and non-thinking modes. It is known for strong tool use capabilities.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. DeepSeek V3.1 - Intelligence, Performance & Price Analysis\\n 🔗 https://artificialanalysis.ai/models/deepseek-v3-1-reasoning\\n 📄 | Llama 3.3 Nemotron Super 49B v1 (Reasoning) | NVIDIA | Open | 128k | | | Llama 3.1 Nemotron Nano 4B v1.1 (Reasoning) | NVIDIA | Open | 128k | | | Llama 3.1 Nemotron Ultra 253B v1 (Reasoning) | NVI...\\n\\n2. DeepSeek-V3.1-Terminus\\n 🔗 https://api-docs.deepseek.com/news/news250922\\n 📄 [Skip to main content](https://api-docs.deepseek.com/news/news250922#__docusaurus_skipToContent_fallback) [English](https://api-docs.deepseek.com/news/news250922#) * [English](https://api-docs.deeps...\\n\\n3. DeepSeek V3.1 Complete Evaluation Analysis: The New AI ...\\n 🔗 https://dev.to/czmilo/deepseek-v31-complete-evaluation-analysis-the-new-ai-programming-benchmark-for-2025-58jc\\n 📄 [![Image 1: Forem Logo](https://media2.dev.to/dynamic/image/width=65,height=,fit=scale-down,gravity=auto,format=auto/https%3A%2F%2Fdev-to-uploads.s3.amazonaws.com%2Fuploads%2Farticles%2Fwalhydbusoe2o1...\\n\\n4. deepseek-ai/DeepSeek-V3.1 - Hugging Face\\n 🔗 https://huggingface.co/deepseek-ai/DeepSeek-V3.1\\n 📄 [DeepSeek-V3.1](https://huggingface.co/deepseek-ai/DeepSeek-V3.1) [Model card](https://huggingface.co/deepseek-ai/DeepSeek-V3.1)[Files Files and versions xet](https://huggingface.co/deepseek-ai/DeepSe...\\n\\n5. deepseek-v3.1 Model by Deepseek-ai - NVIDIA NIM APIs\\n 🔗 https://build.nvidia.com/deepseek-ai/deepseek-v3_1/modelcard\\n 📄 DeepSeek V3.1 Instruct is a hybrid AI model with fast reasoning, 128K context, and strong tool use. DeepSeek V3.1 Instruct is a hybrid AI model with fast reasoning, 128K context, and strong tool use. ...\"}",
"timestamp": "2025-10-08T19:51:22.888530",
"tool_call_id": "web_search:0",
"name": "web_search"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:51:26.267226",
"tool_calls": [
{
"id": "web_search:1",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"Qwen 2.5 Max AI model performance benchmarks specifications\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"搜索失败: 搜索失败: \"}",
"timestamp": "2025-10-08T19:51:30.689980",
"tool_call_id": "web_search:1",
"name": "web_search"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:51:32.542605",
"tool_calls": [
{
"id": "web_search:2",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"Qwen 2.5 Max AI model specifications performance\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: Qwen 2.5 Max AI model specifications performance\\n📅 搜索时间: 2025-10-08T19:51:38.276869\\n\\n📝 AI摘要:\\nQwen 2.5 Max is a high-performance AI model developed by Alibaba. It competes with other leading models like GPT-4o and DeepSeek V3. It is available via API and chat interfaces.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Qwen2.5-Max: Exploring the Intelligence of Large-scale MoE ...\\n 🔗 https://qwenlm.github.io/blog/qwen2.5-max/\\n 📄 Qwen2.5-Max: Exploring the Intelligence of Large-scale MoE Model | Qwen Qwen2.5-Max: Exploring the Intelligence of Large-scale MoE Model * [简体中文](https://qwenlm.github.io/zh/blog/qwen2.5-max/) ![Ima...\\n\\n2. Qwen 2.5-Max: Features, DeepSeek V3 Comparison & More\\n 🔗 https://www.datacamp.com/blog/qwen-2-5-max\\n 📄 Learn about Alibaba's Qwen2.5-Max, a model that competes with GPT-4o, Claude 3.5 Sonnet, and DeepSeek V3. Qwen2.5-Max is Alibabas most powerful AI model to date, designed to compete with top-tier mod...\\n\\n3. Qwen2.5-Max Surpasses DeepSeek-V3 | by Cobus Greyling | Medium\\n 🔗 https://cobusgreyling.medium.com/qwen2-5-max-surpasses-deepseek-v3-c1f8dbec2508\\n 📄 The **Qwen2.5-Max** language model is the latest and most advanced iteration in the Qwen series, pushing the boundaries of AI performance. When it comes to **instruct models**, which are optimised for...\\n\\n4. Qwen 2.5: What It Is, How to Use It, and Key Features\\n 🔗 https://www.prismetric.com/qwen-2-5-what-it-is-and-how-to-use-it/\\n 📄 This allows businesses and developers to integrate Qwens capabilities into apps, websites, chatbots, and enterprise AI software development. ✅ **Real-Time Adaptability & Fine-Tuning**  Developers ma...\\n\\n5. Qwen2.5 & Comparison with Deepseek and ChatGPT - OpenCV\\n 🔗 https://opencv.org/blog/qwen/\\n 📄 * [Mastering Generative AI for Art](https://opencv.org/university/course/mastering-generative-ai-for-art/?utm_source=opcv&utm_medium=menu) * [Free Courses](https://opencv.org/university/free-cours...\"}",
"timestamp": "2025-10-08T19:51:38.284095",
"tool_call_id": "web_search:2",
"name": "web_search"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:51:40.960099",
"tool_calls": [
{
"id": "web_search:3",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"Kimi K2 AI model performance benchmarks specifications\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: Kimi K2 AI model performance benchmarks specifications\\n📅 搜索时间: 2025-10-08T19:51:46.394419\\n\\n📝 AI摘要:\\nKimi K2 is an open-source model excelling in advanced reasoning and coding tasks. It outperforms proprietary models on high-difficulty benchmarks. It scores 65.8% on SWE-bench and is available in Cline.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Kimi-k2 Benchmarks explained\\n 🔗 https://medium.com/data-science-in-your-pocket/kimi-k2-benchmarks-explained-5b25dd6d3a3e\\n 📄 **Tau-2 Bench** focuses on advanced reasoning tasks like planning, multi-step problem solving, and tool use. ### **AIME 2025** and **GPQA-Diamond** are high-difficulty benchmarks aimed at testing the ...\\n\\n2. Kimi K2: Open Agentic Intelligence - Moonshot\\n 🔗 https://moonshotai.github.io/Kimi-K2/\\n 📄 Imagine using Kimi K2 to explore remote-work salaries with the Salary Data Analysis example, where 16 IPython calls generate stats, visualizations, and an interactive webpage of insights. For pre/post...\\n\\n3. Kimi K2 is the large language model series developed by Moonshot ...\\n 🔗 https://github.com/MoonshotAI/Kimi-K2\\n 📄 [Skip to content](https://github.com/MoonshotAI/Kimi-K2#start-of-content) [View license](https://github.com/MoonshotAI/Kimi-K2/blob/main/LICENSE) * [Code](https://github.com/MoonshotAI/Kimi-K2) * ...\\n\\n4. Moonshot's Kimi K2 for Coding: Our First Impressions in Cline\\n 🔗 https://cline.bot/blog/moonshots-kimi-k2-for-coding-our-first-impressions-in-cline\\n 📄 # Moonshot's Kimi K2 for Coding: Our First Impressions in Cline Test Kimi K2, the open-source model achieving 65.8% on SWE-bench. Moonshot AI's Kimi K2 is now available in Cline. Kimi K2's coding perf...\\n\\n5. Kimi K2 - Intelligence, Performance & Price Analysis\\n 🔗 https://artificialanalysis.ai/models/kimi-k2\\n 📄 ![Image 4: Moonshot AI logo](https://artificialanalysis.ai/img/logos/moonshotai_small.svg)Kimi K2 Model Details * [![Image 29: Alibaba logo](https://artificialanalysis.ai/img/logos/alibaba_small.svg...\"}",
"timestamp": "2025-10-08T19:51:46.401036",
"tool_call_id": "web_search:3",
"name": "web_search"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:51:49.560042",
"tool_calls": [
{
"id": "web_search:4",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"Gemini 2.5 Pro AI model performance benchmarks specifications\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: Gemini 2.5 Pro AI model performance benchmarks specifications\\n📅 搜索时间: 2025-10-08T19:51:56.752600\\n\\n📝 AI摘要:\\nGemini 2.5 Pro excels in advanced coding and reasoning. It supports multimodal inputs and has a large context window. It's available via Google AI Studio and Gemini API.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Gemini 2.5 Pro | Generative AI on Vertex AI\\n 🔗 https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro\\n 📄 * [English](https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro) * [Deutsch](https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro?hl=de) * [Italian...\\n\\n2. Gemini 2.5: Our most intelligent AI model - Google Blog\\n 🔗 https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/\\n 📄 [Skip to main content](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#jump-content) [Share](https://blog.google/technology/google-deepmind/gemini-model-thinki...\\n\\n3. Gemini 2.5 Pro - Google DeepMind\\n 🔗 https://deepmind.google/models/gemini/pro/\\n 📄 [![Image 91](https://lh3.googleusercontent.com/6sGpsoYb7GRGRu_aWHAFl6z6tE2ArllKaSHAkGYQKemKl_oM5wtjJEm1pbA6VlGardymb3nTyA0UIY2gWxASl95FTo0LzyPo3z_aa_I4jTmhZhDmaA=w200-h115-n-nu) Models Advanced audio ...\\n\\n4. Gemini 2.5 Pro - Intelligence, Performance & Price Analysis\\n 🔗 https://artificialanalysis.ai/models/gemini-2-5-pro\\n 📄 Analysis of Google's Gemini 2.5 Pro and comparison to other AI models across key metrics including quality, price, performance (tokens per second & time to first token), context window & more. ## Arti...\\n\\n5. Google AI Plans and Features\\n 🔗 https://one.google.com/intl/en/about/google-ai-plans/\\n 📄 * **Gemini app:** Get higher access to our most capable model 2.5 Pro and Deep Research on 2.5 Pro, plus unlock video generation with limited access to Veo 3 Fast[3](https://one.google.com/intl/en/a...\"}",
"timestamp": "2025-10-08T19:51:56.761995",
"tool_call_id": "web_search:4",
"name": "web_search"
},
{
"role": "user",
"content": "等一下不用创建html了创建一个txt文件把你搜集到的关键数据信息注意只要数据信息不要太多文字描述写进去就行了",
"timestamp": "2025-10-08T19:52:55.358197"
},
{
"role": "assistant",
"content": "好的我来创建一个包含关键数据信息的txt文件。",
"timestamp": "2025-10-08T19:53:00.296041"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:53:00.302060",
"tool_calls": [
{
"id": "create_file:5",
"index": 0,
"type": "function",
"function": {
"name": "create_file",
"arguments": "{\"path\": \"ai_models_data.txt\", \"file_type\": \"txt\", \"annotation\": \"AI模型关键数据信息汇总\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"ai_models_data.txt\", \"size\": 0, \"message\": \"已创建空文件: ai_models_data.txt。请使用 append_to_file 追加正文内容,或使用 modify_file 进行小范围替换。\"}",
"timestamp": "2025-10-08T19:53:02.133813",
"tool_call_id": "create_file:5",
"name": "create_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:53:05.803426",
"tool_calls": [
{
"id": "append_to_file:6",
"index": 0,
"type": "function",
"function": {
"name": "append_to_file",
"arguments": "{\"path\": \"ai_models_data.txt\", \"reason\": \"添加AI模型关键数据信息\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"awaiting_content\": true, \"path\": \"ai_models_data.txt\", \"message\": \"\\n请按照以下格式输出需要追加到文件的完整内容禁止输出任何解释性文字\\n<<<APPEND:ai_models_data.txt>>>\\n(在此行之后紧接着写入要追加的全部内容,可包含多行代码)\\n<<<END_APPEND>>>\\n若追加完成后仍需继续写入请再次调用 append_to_file。\"}",
"timestamp": "2025-10-08T19:53:07.617147",
"tool_call_id": "append_to_file:6",
"name": "append_to_file"
},
{
"role": "assistant",
"content": "已向 ai_models_data.txt 追加 27 行666 字节)",
"timestamp": "2025-10-08T19:53:20.780744"
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"ai_models_data.txt\", \"lines\": 27, \"bytes\": 666, \"forced\": false, \"message\": \"已向 ai_models_data.txt 追加 27 行666 字节)\"}",
"timestamp": "2025-10-08T19:53:20.790316",
"tool_call_id": "append_to_file:6",
"name": "append_to_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:53:22.884045",
"tool_calls": [
{
"id": "append_to_file:7",
"index": 0,
"type": "function",
"function": {
"name": "append_to_file",
"arguments": "{\"path\": \"ai_models_data.txt\", \"reason\": \"添加Qwen 2.5 Max数据信息\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"awaiting_content\": true, \"path\": \"ai_models_data.txt\", \"message\": \"\\n请按照以下格式输出需要追加到文件的完整内容禁止输出任何解释性文字\\n<<<APPEND:ai_models_data.txt>>>\\n(在此行之后紧接着写入要追加的全部内容,可包含多行代码)\\n<<<END_APPEND>>>\\n若追加完成后仍需继续写入请再次调用 append_to_file。\"}",
"timestamp": "2025-10-08T19:53:24.698526",
"tool_call_id": "append_to_file:7",
"name": "append_to_file"
},
{
"role": "assistant",
"content": "已向 ai_models_data.txt 追加 6 行203 字节)",
"timestamp": "2025-10-08T19:53:29.729042"
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"ai_models_data.txt\", \"lines\": 6, \"bytes\": 203, \"forced\": false, \"message\": \"已向 ai_models_data.txt 追加 6 行203 字节)\"}",
"timestamp": "2025-10-08T19:53:29.736100",
"tool_call_id": "append_to_file:7",
"name": "append_to_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:53:31.444737",
"tool_calls": [
{
"id": "append_to_file:8",
"index": 0,
"type": "function",
"function": {
"name": "append_to_file",
"arguments": "{\"path\": \"ai_models_data.txt\", \"reason\": \"添加Kimi K2数据信息\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"awaiting_content\": true, \"path\": \"ai_models_data.txt\", \"message\": \"\\n请按照以下格式输出需要追加到文件的完整内容禁止输出任何解释性文字\\n<<<APPEND:ai_models_data.txt>>>\\n(在此行之后紧接着写入要追加的全部内容,可包含多行代码)\\n<<<END_APPEND>>>\\n若追加完成后仍需继续写入请再次调用 append_to_file。\"}",
"timestamp": "2025-10-08T19:53:33.259553",
"tool_call_id": "append_to_file:8",
"name": "append_to_file"
},
{
"role": "assistant",
"content": "已向 ai_models_data.txt 追加 10 行301 字节)",
"timestamp": "2025-10-08T19:53:37.298829"
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"ai_models_data.txt\", \"lines\": 10, \"bytes\": 301, \"forced\": false, \"message\": \"已向 ai_models_data.txt 追加 10 行301 字节)\"}",
"timestamp": "2025-10-08T19:53:37.304428",
"tool_call_id": "append_to_file:8",
"name": "append_to_file"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-10-08T19:53:41.064603",
"tool_calls": [
{
"id": "append_to_file:9",
"index": 0,
"type": "function",
"function": {
"name": "append_to_file",
"arguments": "{\"path\": \"ai_models_data.txt\", \"reason\": \"添加Gemini 2.5 Pro数据信息\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"awaiting_content\": true, \"path\": \"ai_models_data.txt\", \"message\": \"\\n请按照以下格式输出需要追加到文件的完整内容禁止输出任何解释性文字\\n<<<APPEND:ai_models_data.txt>>>\\n(在此行之后紧接着写入要追加的全部内容,可包含多行代码)\\n<<<END_APPEND>>>\\n若追加完成后仍需继续写入请再次调用 append_to_file。\"}",
"timestamp": "2025-10-08T19:53:42.880307",
"tool_call_id": "append_to_file:9",
"name": "append_to_file"
},
{
"role": "assistant",
"content": "已向 ai_models_data.txt 追加 12 行392 字节)",
"timestamp": "2025-10-08T19:53:46.549814"
},
{
"role": "tool",
"content": "{\"success\": true, \"path\": \"ai_models_data.txt\", \"lines\": 12, \"bytes\": 392, \"forced\": false, \"message\": \"已向 ai_models_data.txt 追加 12 行392 字节)\"}",
"timestamp": "2025-10-08T19:53:46.558688",
"tool_call_id": "append_to_file:9",
"name": "append_to_file"
},
{
"role": "assistant",
"content": "<<<APPEND:ai_models_data.txt>>>\nGemini 2.5 Pro:\n- Developer: Google DeepMind\n- Model Type: Multimodal AI\n- Context Window: Large (exact size not specified)\n- Special Features: Advanced coding, reasoning, multimodal inputs\n- Availability: Google AI Studio, Gemini API\n- Performance Focus: Advanced coding and reasoning tasks\n- Key Strengths: Multimodal capabilities, large context understanding\n<<<END_APPEND>>>",
"timestamp": "2025-10-08T19:53:50.253995"
}
],
"metadata": {
"project_path": "/Users/jojo/Desktop/agents/正在修复中/agent_kimi_源码备份/project",
"thinking_mode": true,
"total_messages": 33,
"total_tools": 24,
"status": "active"
},
"token_statistics": {
"total_input_tokens": 233192,
"total_output_tokens": 766,
"updated_at": "2025-10-08T19:54:16.471988"
}
}