agent-Specialization/users/jojo/data/conversations/conv_20251108_113230_302.json
2025-11-14 16:44:12 +08:00

266 lines
100 KiB
JSON
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"id": "conv_20251108_113230_302",
"title": "使用标准的openapi请求大模型时有没有用于控制流式输出的单个chunk返回的token数量的参...",
"created_at": "2025-11-08T11:32:30.303216",
"updated_at": "2025-11-08T23:59:33.880952",
"messages": [
{
"role": "user",
"content": "使用标准的openapi请求大模型时有没有用于控制流式输出的单个chunk返回的token数量的参数",
"timestamp": "2025-11-08T11:33:49.745413"
},
{
"role": "assistant",
"content": "我来帮您查找关于OpenAPI标准中流式输出控制参数的相关信息。",
"timestamp": "2025-11-08T11:33:52.029231"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-11-08T11:33:52.032312",
"tool_calls": [
{
"id": "web_search:0",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"query\": \"OpenAPI specification streaming response token chunk size parameter\", \"max_results\": 5}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: OpenAPI specification streaming response token chunk size parameter\\n📅 搜索时间: 2025-11-08T11:33:57.277254\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nThe OpenAPI Specification does not define a specific token chunk size parameter for streaming responses. Instead, it allows for the use of the `maxLength` keyword to set an upper bound on the length of a streaming payload. This can be applied to both string and binary data.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. OpenAPI Specification v3.2.0\\n 🔗 https://spec.openapis.org/oas/v3.2.0.html\\n 📄 =%xA0-D7FF%xF900-FDCF%xFDF0-FFEF%x10000-1FFFD%x20000-2FFFD%x30000-3FFFD%x40000-4FFFD%x50000-5FFFD%x60000-6FFFD%x70000-7FFFD%x80000-8FFFD%x90000-9FFFD%xA0000-AFFFD%xB0000-BFFFD%xC0000-CFFFD%xD0000-DFFF...\\n\\n2. JSON Streaming in OpenAPI v3.2.0 - Bump.sh\\n 🔗 https://bump.sh/blog/json-streaming-openapi-3-2/\\n 📄 Streaming data allows API servers to send and receive data in real-time or in chunks, rather than waiting for the entire response to be ready. This is already how browsers handle HTML, images, and oth...\\n\\n3. OpenAPI Specification - Version 3.1.0 - Swagger\\n 🔗 https://swagger.io/specification/\\n 📄 The `maxLength` keyword MAY be used to set an expected upper bound on the length of a streaming payload. The keyword can be applied to either string data, including encoded binary data, or to unencode...\\n\\n4. Streaming API responses - OpenAI Platform\\n 🔗 https://platform.openai.com/docs/guides/streaming-responses\\n 📄 ```\\n1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12\\n13\\n14\\n15\\n16\\n17\\n18\\n19\\n20\\n21\\n22\\n23\\n24\\n25\\ntype StreamingEvent =\\n\\t| ResponseCreatedEvent\\n\\t| ResponseInProgressEvent\\n\\t| ResponseFailedEvent\\n\\t| ResponseCompletedEvent\\n\\t| Respo...\\n\\n5. Dear all, I have the questions about the openAI assistant chunk size ...\\n 🔗 https://community.openai.com/t/dear-all-i-have-the-questions-about-the-openai-assistant-chunk-size-and-chunk-overlap-of-file-search-tool/831342\\n 📄 To answer the question though, if you pick a large chunk size for a file, larger than the number of language tokens within, you get one chunk per file. Then the file content is either returned in whol...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"OpenAPI specification streaming response token chunk size parameter\", \"results\": [{\"index\": 1, \"title\": \"OpenAPI Specification v3.2.0\", \"url\": \"https://spec.openapis.org/oas/v3.2.0.html\", \"content\": \"=%xA0-D7FF%xF900-FDCF%xFDF0-FFEF%x10000-1FFFD%x20000-2FFFD%x30000-3FFFD%x40000-4FFFD%x50000-5FFFD%x60000-6FFFD%x70000-7FFFD%x80000-8FFFD%x90000-9FFFD%xA0000-AFFFD%xB0000-BFFFD%xC0000-CFFFD%xD0000-DFFFD%xE1000-EFFFD iprivate =%xE000-F8FF%xF0000-FFFFD%x100000-10FFFD [...] ``` [...] ```\", \"score\": 0.64880073, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"JSON Streaming in OpenAPI v3.2.0 - Bump.sh\", \"url\": \"https://bump.sh/blog/json-streaming-openapi-3-2/\", \"content\": \"Streaming data allows API servers to send and receive data in real-time or in chunks, rather than waiting for the entire response to be ready. This is already how browsers handle HTML, images, and other media, and now it can be done for APIs working with JSON. [...] This can improve responses with lots of data, or be used to send events from server to client in realtime without polling or adding the complexity of Webhooks or WebSockets. Streaming works by sending “chunks”, which clients can then work with individually instead of waiting for the entire response to be ready. [...] required:[foo] properties: foo: type: integer\", \"score\": 0.47110215, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"OpenAPI Specification - Version 3.1.0 - Swagger\", \"url\": \"https://swagger.io/specification/\", \"content\": \"The `maxLength` keyword MAY be used to set an expected upper bound on the length of a streaming payload. The keyword can be applied to either string data, including encoded binary data, or to unencoded binary data. For unencoded binary, the length is the number of octets.\\n\\n##### Migrating binary descriptions from OAS 3.0\\n\\nThe following table shows how to migrate from OAS 3.0 binary data descriptions, continuing to use `image/png` as the example binary media type: [...] | simple | true | _empty_ | blue | blue,black,brown | R=100,G=200,B=150 |\\n| form | false | ?color= | ?color=blue | ?color=blue,black,brown | ?color=R,100,G,200,B,150 |\\n| form | true | ?color= | ?color=blue | ?color=blue&color=black&color=brown | ?R=100&G=200&B=150 |\\n| spaceDelimited | false | _n/a_ | _n/a_ | ?color=blue%20black%20brown | ?color=R%20100%20G%20200%20B%20150 |\\n| spaceDelimited | true | _n/a_ | _n/a_ | _n/a_ | _n/a_ | [...] | pipeDelimited | false | _n/a_ | _n/a_ | ?color=blue%7Cblack%7Cbrown | ?color=R%7C100%7CG%7C200%7CB%7C150 |\\n| pipeDelimited | true | _n/a_ | _n/a_ | _n/a_ | _n/a_ |\\n| deepObject | false | _n/a_ | _n/a_ | _n/a_ | _n/a_ |\\n| deepObject | true | _n/a_ | _n/a_ | _n/a_ | ?color%5BR%5D=100&color%5BG%5D=200&color%5BB%5D=150 |\", \"score\": 0.4024631, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"Streaming API responses - OpenAI Platform\", \"url\": \"https://platform.openai.com/docs/guides/streaming-responses\", \"content\": \"```\\n1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12\\n13\\n14\\n15\\n16\\n17\\n18\\n19\\n20\\n21\\n22\\n23\\n24\\n25\\ntype StreamingEvent =\\n\\t| ResponseCreatedEvent\\n\\t| ResponseInProgressEvent\\n\\t| ResponseFailedEvent\\n\\t| ResponseCompletedEvent\\n\\t| ResponseOutputItemAdded\\n\\t| ResponseOutputItemDone\\n\\t| ResponseContentPartAdded\\n\\t| ResponseContentPartDone\\n\\t| ResponseOutputTextDelta\\n\\t| ResponseOutputTextAnnotationAdded\\n\\t| ResponseTextDone\\n\\t| ResponseRefusalDelta\\n\\t| ResponseRefusalDone\\n\\t| ResponseFunctionCallArgumentsDelta [...] Sign up\\n\\n# Streaming API responses\\n\\nLearn how to stream model responses from the OpenAI API using server-sent events.\\n\\nBy default, when you make a request to the OpenAI API, we generate the model's entire output before sending it back in a single HTTP response. When generating long outputs, waiting for a response can take time. Streaming responses lets you start printing or processing the beginning of the model's output while it continues generating the full response.\\n\\n## Enable streaming\", \"score\": 0.29060373, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"Dear all, I have the questions about the openAI assistant chunk size ...\", \"url\": \"https://community.openai.com/t/dear-all-i-have-the-questions-about-the-openai-assistant-chunk-size-and-chunk-overlap-of-file-search-tool/831342\", \"content\": \"To answer the question though, if you pick a large chunk size for a file, larger than the number of language tokens within, you get one chunk per file. Then the file content is either returned in whole by a search, or other relevant chunks from other files displace it (and the search doesnt have a threshold, it always returns results, regardless of how irrelevant). At least one huge chunk has no wasteful overlap if you are curating document sizes and contents yourself.\\n\\njason123\\n\\nJun 2024 [...] | Topic | Replies | Views | Activity |\\n| Problems about the parameter settings for File Search (Chunk size & Chunk overlap) and Temperature, Top p in the assistant API gpt-4,api | 3 | 839 | Jul 2024 |\\n| PDF page identification errors with file search on assistants v2 api. Paging problem. Pages not in chunk metadata? API assistants-api,gpt-4o,file-uploads | 5 | 1.0k | Jun 2024 |\\n| File search and token usage (assistant) API chatgpt,gpt-4,assistants-api | 5 | 558 | Feb 11 | [...] # Dear all, I have the questions about the openAI assistant chunk size and chunk overlap of file search tool?\\n\\nAPI\\n\\nYou have selected 0 posts.\\n\\nselect all\\n\\ncancel selecting\\n\\n4\\n\\n3\\n\\nJun 2024\\n\\n1 / 7\\n\\nJun 2024\\n\\nJun 2024\\n\\njason123\\n\\nJun 2024\\n\\nDear all, I have the questions about the openAI assistant chunk size and chunk overlap of file search tool\\n\\nIn the assistant playground, the default parameters for file searchs chunk size and chunk overlap are 800 and 400, respectively.\", \"score\": 0.29033202, \"published_date\": \"\"}], \"total_results\": 5}",
"timestamp": "2025-11-08T11:33:57.279216",
"tool_call_id": "web_search:0",
"name": "web_search"
},
{
"role": "assistant",
"content": "让我搜索更具体的关于OpenAPI流式输出参数的信息",
"timestamp": "2025-11-08T11:34:01.382607"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-11-08T11:34:01.387589",
"tool_calls": [
{
"id": "web_search:1",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"OpenAPI streaming response chunk size control parameter token limit\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: OpenAPI streaming response chunk size control parameter token limit\\n📅 搜索时间: 2025-11-08T11:34:04.494611\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nOpenAPI does not provide a control parameter for streaming response chunk size. The chunk size is determined by the AI model and cannot be modified by the user. The response is divided into chunks based on the model's output.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. using open AI API with stream option - Microsoft Q&A\\n 🔗 https://learn.microsoft.com/en-us/answers/questions/1372127/using-open-ai-api-with-stream-option\\n 📄 In general, the chunk size is determined by the AI model and the input text. The model will generate chunks based on the structure and content of the input text, which can result in smaller or larger ...\\n\\n2. OpenAPI Specification v3.1.0\\n 🔗 https://spec.openapis.org/oas/v3.1.0.html\\n 📄 true true, \\\"schema\\\":{\\\"type\\\": \\\"integer\\\", \\\"format\\\": \\\"int32\\\"}}, \\\"limitParam\\\":{\\\"name\\\": \\\"limit\\\", \\\"in\\\": \\\"query\\\", \\\"description\\\": \\\"max records to return\\\", \\\"required\\\": true true, \\\"schema\\\":{\\\"type\\\": \\\"integer\\\", \\\"...\\n\\n3. Dear all, I have the questions about the openAI assistant chunk size ...\\n 🔗 https://community.openai.com/t/dear-all-i-have-the-questions-about-the-openai-assistant-chunk-size-and-chunk-overlap-of-file-search-tool/831342\\n 📄 hank you for your response. So the tokens for instructions are counted towards the 4096 tokens limit for each conversation with the assistant?\\n\\nIf I have records of conversations between a social work...\\n\\n4. Describing Parameters | Swagger Docs\\n 🔗 https://swagger.io/docs/specification/v3_0/describing-parameters/\\n 📄 OpenAPI 3.0 does not support parameter dependencies and mutually exclusive parameters. There is an open feature request at . What you can do is document the restrictions in the parameter description a...\\n\\n5. Streaming API Responses from AI Models to the UI Using Web ...\\n 🔗 https://medium.com/@05.ankitarora/streaming-api-responses-from-ai-models-to-the-ui-using-web-streams-api-b010c0d4b397\\n 📄 }); // Set headers for streaming res.setHeader('Content-Type', 'text/event-stream'); res.setHeader('Cache-Control', 'no-cache'); res.setHeader('Connection', 'keep-alive'); // Stream res...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"OpenAPI streaming response chunk size control parameter token limit\", \"results\": [{\"index\": 1, \"title\": \"using open AI API with stream option - Microsoft Q&A\", \"url\": \"https://learn.microsoft.com/en-us/answers/questions/1372127/using-open-ai-api-with-stream-option\", \"content\": \"In general, the chunk size is determined by the AI model and the input text. The model will generate chunks based on the structure and content of the input text, which can result in smaller or larger chunks depending on the complexity of the text.\\n\\n Unfortunately, there is no way to designate a specific chunk size when using the stream option in Azure OpenAI. The chunk size is determined by the AI model and cannot be modified by the user. [...] An Azure service that provides access to OpenAIs GPT-3 models with enterprise capabilities.\\n\\nSign in to follow\\n\\n0 {count} votes\\n\\n1. Saurabh Sharma • \\n 23,866 Reputation points • Microsoft Employee • Moderator\\n\\n 2023-09-20T20:51:28.5066667+00:00\\n\\n Hi @현욱 김\\n\\n Welcome to Microsoft Q&A! Thanks for posting the question.\\n\\n I don't think you can decide the chunk size but I am checking internally on your ask and get back to you at the earliest. Thanks.\\n\\n Sign in to comment\\n\\n## 1 answer [...] When using the stream option in Azure OpenAI, the response is divided into chunks to allow for more efficient processing and transmission of data. The size and number of chunks can vary depending on the length and complexity of the input text, as well as the specific AI model being used.\", \"score\": 0.43208793, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"OpenAPI Specification v3.1.0\", \"url\": \"https://spec.openapis.org/oas/v3.1.0.html\", \"content\": \"true true, \\\"schema\\\":{\\\"type\\\": \\\"integer\\\", \\\"format\\\": \\\"int32\\\"}}, \\\"limitParam\\\":{\\\"name\\\": \\\"limit\\\", \\\"in\\\": \\\"query\\\", \\\"description\\\": \\\"max records to return\\\", \\\"required\\\": true true, \\\"schema\\\":{\\\"type\\\": \\\"integer\\\", \\\"format\\\": \\\"int32\\\"}}}, \\\"responses\\\":{\\\"NotFound\\\":{\\\"description\\\":\\\"Entity not found.\\\"}, \\\"IllegalInput\\\":{\\\"description\\\":\\\"Illegal input for operation.\\\"}, \\\"GeneralError\\\":{\\\"description\\\": \\\"General Error\\\", \\\"content\\\":{\\\"application/json\\\":{\\\"schema\\\":{\\\"$ref\\\":\\\"#/components/schemas/GeneralError\\\"}}}}}, [...] ``` [...] ```\", \"score\": 0.31336772, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"Dear all, I have the questions about the openAI assistant chunk size ...\", \"url\": \"https://community.openai.com/t/dear-all-i-have-the-questions-about-the-openai-assistant-chunk-size-and-chunk-overlap-of-file-search-tool/831342\", \"content\": \"hank you for your response. So the tokens for instructions are counted towards the 4096 tokens limit for each conversation with the assistant?\\n\\nIf I have records of conversations between a social worker and a client, and I want the assistant to generate a case report based on our social workers report format (including important points and content) and the mental status examination guideline, do the assistant instructions need to be this detailed, consuming many tokens?\\n\\nThank you [...] If I upload guideline files (instructions for the AI on how to format reports and special focus items) with content sizes of 1500 and 400 tokens, what should I set the chunk size and chunk overlap parameters to?\\n\\nOr should I just use the default settings?\\n\\nTTT2630×748 15 KB\\n\\nThank you.\\n\\n4\\n\\n3\\n\\n\\\\_j\\n\\nRegular\\n\\nJun 2024\\n\\nInstructions for the AI should always be present.\\n\\nThe file\\\\_search is just that: a function that the AI must invoke with query terms to search upon. [...] To answer the question though, if you pick a large chunk size for a file, larger than the number of language tokens within, you get one chunk per file. Then the file content is either returned in whole by a search, or other relevant chunks from other files displace it (and the search doesnt have a threshold, it always returns results, regardless of how irrelevant). At least one huge chunk has no wasteful overlap if you are curating document sizes and contents yourself.\\n\\njason123\\n\\nJun 2024\", \"score\": 0.2556622, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"Describing Parameters | Swagger Docs\", \"url\": \"https://swagger.io/docs/specification/v3_0/describing-parameters/\", \"content\": \"OpenAPI 3.0 does not support parameter dependencies and mutually exclusive parameters. There is an open feature request at . What you can do is document the restrictions in the parameter description and define the logic in the 400 Bad Request response. For example, consider the `/report` endpoint that accepts either a relative date range (`rdate`) or an exact range (`start_date`+`end_date`):\\n\\nYou can describe this endpoint as follows:\\n\\n### References\\n\\nParameter Object [...] OpenAPI 3.0 distinguishes between the following parameter types based on the parameter location. The location is determined by the parameters `in` key, for example, `in: query` or `in: path`.\\n\\n path parameters, such as `/users/{id}`\\n query parameters, such as `/users?role=admin`\\n header parameters, such as `X-MyHeader: Value`\\n cookie parameters, which are passed in the `Cookie` header, such as `Cookie: debug=0; csrftoken=BUSe35dohU3O1MZvDCU`\\n\\n### Path Parameters [...] In a similar way, you can define custom response headers. Header parameter can be primitives, arrays and objects. Arrays and objects are serialized using the `simple` style. For more information, see Parameter Serialization.\\n\\nNote: Header parameters named `Accept`, `Content-Type` and `Authorization` are not allowed. To describe these headers, use the corresponding OpenAPI keywords:\", \"score\": 0.21484825, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"Streaming API Responses from AI Models to the UI Using Web ...\", \"url\": \"https://medium.com/@05.ankitarora/streaming-api-responses-from-ai-models-to-the-ui-using-web-streams-api-b010c0d4b397\", \"content\": \"}); // Set headers for streaming res.setHeader('Content-Type', 'text/event-stream'); res.setHeader('Cache-Control', 'no-cache'); res.setHeader('Connection', 'keep-alive'); // Stream response data response.body.on('data', (chunk) => { res.write(chunk.toString()); // Stream chunks to the client }); response.body.on('end', () => { res.end(); // End the stream }); response.body.on('error', (err) => { console.error('Error:', err); [...] // Enable streaming\\n// Set headers for streaming setHeader'Content-Type''text/event-stream' setHeader'Cache-Control''no-cache' setHeader 'Connection''keep-alive'\\n// Stream response data body on 'data'(chunk) => chunk write toString\\n// Stream chunks to the client body on 'end'() => end\\n// End the stream body on 'error'(err) => err console error'Error:' status 500 end listen 3000() => console log'Server is running on \\n``` [...] ## Step 4: Key Features of the Implementation\\n\\n1. Backend:\\n\\n Makes a `POST` request to OpenAIs API with `stream: true` enabled.\\n Streams chunks of data using `res.write()`.\\n\\n2. Frontend:\\n\\n Processes the `ReadableStream` from the API response using `getReader()`.\\n Updates the UI incrementally by appending chunks to the state.\\n\\n## Conclusion\", \"score\": 0.1963176, \"published_date\": \"\"}], \"total_results\": 5}",
"timestamp": "2025-11-08T11:34:04.496863",
"tool_call_id": "web_search:1",
"name": "web_search"
},
{
"role": "assistant",
"content": "让我搜索更具体的关于大模型API流式输出控制参数的信息",
"timestamp": "2025-11-08T11:34:07.117842"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-11-08T11:34:07.122755",
"tool_calls": [
{
"id": "web_search:2",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"\\\"OpenAI API\\\" \\\"stream\\\" \\\"chunk size\\\" \\\"token limit\\\" parameter control\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: \\\"OpenAI API\\\" \\\"stream\\\" \\\"chunk size\\\" \\\"token limit\\\" parameter control\\n📅 搜索时间: 2025-11-08T11:34:10.145172\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nThe OpenAI API streams responses in chunks when `stream=True` is set. Each chunk contains a small part of the output. The `max_tokens` parameter controls the total number of tokens generated.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Mastering the OpenAI Stream API: Real-Time AI for Developers\\n 🔗 https://videosdk.live/developer-hub/ai/openai-stream-api\\n 📄 When you use the `stream=True` parameter, the OpenAI API streams response chunks over an HTTP connection via server-sent events (SSE). Each chunk typically contains a small part of the model's output ...\\n\\n2. Azure OpenAI in Azure AI Foundry Models REST API reference\\n 🔗 https://learn.microsoft.com/en-us/azure/ai-foundry/openai/reference\\n 📄 | stream | boolean | Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a `data: [DONE]` messa...\\n\\n3. How does streaming work in OpenAI's APIs? - Stack Overflow\\n 🔗 https://stackoverflow.com/questions/78660088/how-does-streaming-work-in-openais-apis\\n 📄 Show activity on this post.\\n\\nWhen you use stream=True in the OpenAI API call, it streams data back incrementally. The response object is an iterable that yields chunks of data as they are generated.\\n\\n...\\n\\n4. Dear all, I have the questions about the openAI assistant chunk size ...\\n 🔗 https://community.openai.com/t/dear-all-i-have-the-questions-about-the-openai-assistant-chunk-size-and-chunk-overlap-of-file-search-tool/831342\\n 📄 If I upload guideline files (instructions for the AI on how to format reports and special focus items) with content sizes of 1500 and 400 tokens, what should I set the chunk size and chunk overlap par...\\n\\n5. Help for function calls with streaming - OpenAI Developer Community\\n 🔗 https://community.openai.com/t/help-for-function-calls-with-streaming/627170\\n 📄 I havent seen them yet in “tools” for what Ive written to the API, but you should write code expecting any “content” chunks until finish reason need to be printed.\\n\\n## Implement\\n\\nLets write some ne...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"\\\"OpenAI API\\\" \\\"stream\\\" \\\"chunk size\\\" \\\"token limit\\\" parameter control\", \"results\": [{\"index\": 1, \"title\": \"Mastering the OpenAI Stream API: Real-Time AI for Developers\", \"url\": \"https://videosdk.live/developer-hub/ai/openai-stream-api\", \"content\": \"When you use the `stream=True` parameter, the OpenAI API streams response chunks over an HTTP connection via server-sent events (SSE). Each chunk typically contains a small part of the model's output (for example, a few words or tokens), along with metadata like choices and finish\\\\_reason. This allows applications to display responses as they're generated, vital for chatbots, real-time editors, live data processing, and more.\\n\\nUse Cases: [...] The OpenAI stream API unlocks high-performance, real-time AI applications for developers and enterprises. By streaming responses token by token, it enhances interactivity, reduces latency, and enables entirely new user experiences. With robust error handling, security, and best practices, you can confidently bring the power of streaming AI to your next project. Start experimenting today and transform your applications with the OpenAI stream API.\\n\\nGet 10,000 Free Minutes Every Months [...] The OpenAI API empowers developers to tap into state-of-the-art language models for a variety of applications, from chatbots to content generation. As these models become more prevalent in real-time and interactive systems, the need for faster, more responsive outputs has grown. The OpenAI Stream API addresses this demand by enabling streaming responses, allowing data to flow token-by-token instead of waiting for the entire completion. This approach is crucial for developers and enterprises\", \"score\": 0.71185225, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"Azure OpenAI in Azure AI Foundry Models REST API reference\", \"url\": \"https://learn.microsoft.com/en-us/azure/ai-foundry/openai/reference\", \"content\": \"| stream | boolean | Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a `data: [DONE]` message. | No | False |\\n| suffix | string | The suffix that comes after a completion of inserted text.This parameter is only supported for `gpt-3.5-turbo-instruct`. | No | None | [...] | stream | boolean | If set, partial message deltas will be sent, like in ChatGPT. Tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a `data: [DONE]` message. | No | False |\\n| stop | string or array | Up to four sequences where the API will stop generating further tokens. | No | [...] | max\\\\_tokens | integer | The maximum number of tokens that can be generated in the completion.The token count of your prompt plus `max_tokens` can't exceed the model's context length. | No | 16 |\\n| n | integer | How many completions to generate for each prompt.Note: Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`. | No | 1 |\", \"score\": 0.59401023, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"How does streaming work in OpenAI's APIs? - Stack Overflow\", \"url\": \"https://stackoverflow.com/questions/78660088/how-does-streaming-work-in-openais-apis\", \"content\": \"Show activity on this post.\\n\\nWhen you use stream=True in the OpenAI API call, it streams data back incrementally. The response object is an iterable that yields chunks of data as they are generated.\\n\\nAPI call:\\n\\n```\\nresponse = client.chat.completions.create(messages=messages, model=\\\"gpt-4o\\\", temperature=0.5, stream=True)\\n\\n```\\n\\nIteration:\\n\\n```\\nfor sse_chunk in response:\\n content = sse_chunk.choices.delta.content\\n # some other stuff\\n\\n```\\n\\nShare\\n\\nCC BY-SA 4.0\\n\\nImprove this answer [...] @Ry- Am I understanding this correctly? The OpenAI API call is returning a `Stream` object which is a generator. As we iterate that generator object, we are getting the next chunk of data and the response object is getting the updated data as a stream as an independent process?\\n\\n user25622659\\n\\n \\n user25622659\\n\\n 2024-06-24 01:25:40 +00:00\\n\\n Commented\\n Jun 24, 2024 at 1:25\\n\\nAdd a comment\\n |\\n\\n## 1 Answer 1\\n\\nReset to default\\n\\nThis answer is useful\\n\\n2\\n\\nSave this answer. [...] ```\\ndef stream_message(\\n messages\\n):\\n client = OpenAI(api_key=settings.OPENAI_API_KEY)\\n response = client.chat.completions.create(messages=messages, model=\\\"gpt-4o\\\", temperature=0.5, stream=True, stop=None)\\n return response\\n\\nresponse = stream_message(messages,)\\n\\nfor sse in response:\\n content = sse_chunk.choices.delta.content\\n # some other stuff\\n\\n```\", \"score\": 0.5533369, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"Dear all, I have the questions about the openAI assistant chunk size ...\", \"url\": \"https://community.openai.com/t/dear-all-i-have-the-questions-about-the-openai-assistant-chunk-size-and-chunk-overlap-of-file-search-tool/831342\", \"content\": \"If I upload guideline files (instructions for the AI on how to format reports and special focus items) with content sizes of 1500 and 400 tokens, what should I set the chunk size and chunk overlap parameters to?\\n\\nOr should I just use the default settings?\\n\\nTTT2630×748 15 KB\\n\\nThank you.\\n\\n4\\n\\n3\\n\\n\\\\_j\\n\\nRegular\\n\\nJun 2024\\n\\nInstructions for the AI should always be present.\\n\\nThe file\\\\_search is just that: a function that the AI must invoke with query terms to search upon. [...] hank you for your response. So the tokens for instructions are counted towards the 4096 tokens limit for each conversation with the assistant?\\n\\nIf I have records of conversations between a social worker and a client, and I want the assistant to generate a case report based on our social workers report format (including important points and content) and the mental status examination guideline, do the assistant instructions need to be this detailed, consuming many tokens?\\n\\nThank you [...] # Dear all, I have the questions about the openAI assistant chunk size and chunk overlap of file search tool?\\n\\nAPI\\n\\nYou have selected 0 posts.\\n\\nselect all\\n\\ncancel selecting\\n\\n4\\n\\n3\\n\\nJun 2024\\n\\n1 / 7\\n\\nJun 2024\\n\\nJun 2024\\n\\njason123\\n\\nJun 2024\\n\\nDear all, I have the questions about the openAI assistant chunk size and chunk overlap of file search tool\\n\\nIn the assistant playground, the default parameters for file searchs chunk size and chunk overlap are 800 and 400, respectively.\", \"score\": 0.49318945, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"Help for function calls with streaming - OpenAI Developer Community\", \"url\": \"https://community.openai.com/t/help-for-function-calls-with-streaming/627170\", \"content\": \"I havent seen them yet in “tools” for what Ive written to the API, but you should write code expecting any “content” chunks until finish reason need to be printed.\\n\\n## Implement\\n\\nLets write some neat code: [...] print(reply)\\nprint(tools_obj) [...] stream = client.chat.completions.create(\\n model=\\\"gpt-3.5-turbo-0125\\\",\\n messages=messages,\\n tools=tools,\\n tool_choice=\\\"auto\\\", # auto is default, but we'll be explicit\\n stream=True,\\n)\", \"score\": 0.47227025, \"published_date\": \"\"}], \"total_results\": 5}",
"timestamp": "2025-11-08T11:34:10.148583",
"tool_call_id": "web_search:2",
"name": "web_search"
},
{
"role": "assistant",
"content": "让我搜索更多关于不同大模型API中流式输出控制参数的信息",
"timestamp": "2025-11-08T11:34:14.290435"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-11-08T11:34:14.298851",
"tool_calls": [
{
"id": "web_search:3",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"large language model API streaming chunk size control Anthropic Claude Google Gemini\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: large language model API streaming chunk size control Anthropic Claude Google Gemini\\n📅 搜索时间: 2025-11-08T11:34:17.585757\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nAnthropic's Claude and Google's Gemini APIs support streaming responses, with Gemini typically returning larger chunks. The `stream=True` parameter enables this feature.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. How streaming LLM APIs work - Simon Willison: TIL\\n 🔗 https://til.simonwillison.net/llms/streaming-llm-apis\\n 📄 ## Anthropic Claude\\n\\nHere's the same prompt agaist Claude 3 Sonnet:\\n\\n```\\n\\\"Content-Type: application/json\\\" \\\" \\\"\\\"x-api-key: $ANTHROPIC_API_KEY\\\" \\\" $ANTHROPIC_API_KEY \\\"\\\"anthropic-version: 2023-06-01\\\" \\\" \\\"'{...\\n\\n2. Models overview - Claude Docs\\n 🔗 https://docs.claude.com/claude/docs/models-overview\\n 📄 Claude is a family of state-of-the-art large language models developed by Anthropic. This guide introduces our models and compares their performance.\\n\\n## Choosing a model [...] increase the maximum ...\\n\\n3. Anthropic Claude 4: Evolution of a Large Language Model\\n 🔗 https://intuitionlabs.ai/articles/anthropic-claude-4-llm-evolution\\n 📄 Model Size and Architecture: While Anthropic has not publicly disclosed the exact parameter count of Claude 4, it is believed to be a very large transformer model, likely on the order of tens of billi...\\n\\n4. Working with Gemini API: Text Gen, Doc Processing & Code Execution\\n 🔗 https://obot.ai/resources/learning-center/google-gemini-api/\\n 📄 Google Gemini is a multi-modal large language model (LLM). It provides natural language and image processing capabilities to enable text generation, sentiment analysis, document processing, image and ...\\n\\n5. Comparing the streaming response structure for different LLM APIs\\n 🔗 https://medium.com/percolation-labs/comparing-the-streaming-response-structure-for-different-llm-apis-2b8645028b41\\n 📄 And then for Google — the uri changes in this case from generateContent to streamGenerationContent and also we enable streaming with SSE as was the case for anthropic but this time in the url. We add ...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"large language model API streaming chunk size control Anthropic Claude Google Gemini\", \"results\": [{\"index\": 1, \"title\": \"How streaming LLM APIs work - Simon Willison: TIL\", \"url\": \"https://til.simonwillison.net/llms/streaming-llm-apis\", \"content\": \"## Anthropic Claude\\n\\nHere's the same prompt agaist Claude 3 Sonnet:\\n\\n```\\n\\\"Content-Type: application/json\\\" \\\" \\\"\\\"x-api-key: $ANTHROPIC_API_KEY\\\" \\\" $ANTHROPIC_API_KEY \\\"\\\"anthropic-version: 2023-06-01\\\" \\\" \\\"'{' \\\"model\\\": \\\"claude-3-sonnet-20240229\\\", \\\"messages\\\": [{\\\"role\\\": \\\"user\\\", \\\"content\\\": \\\"Tell me a joke\\\"}], \\\"stream\\\": true, \\\"max_tokens\\\": 1024 }' '\\n```\\n\\nThe `max_tokens` option is required by the Anthropic API.\\n\\nI got back this (it's shorter so I didn't truncate it): [...] Interesting HTTP headers:\\n\\n```\\ncontent-type: text/event-stream; charset=utf-8 cache-control: no-cache anthropic-ratelimit-requests-limit: 4000 anthropic-ratelimit-requests-remaining: 3999 anthropic-ratelimit-requests-reset: 2024-09-21T19:44:06Z anthropic-ratelimit-tokens-limit: 400000 anthropic-ratelimit-tokens-remaining: 399000 anthropic-ratelimit-tokens-reset: 2024-09-21T19:43:44Z request-id: req_0189EJVDRQDoLyxjoNqG8Dw7 \\n```\\n\\n## Google Gemini [...] Google Gemini returns much larger tokens chunks, so I had to prompt \\\"Tell me a very long joke\\\" to get back a streaming response that included multiple parts:\\n\\n```\\n\\\" \\\"${GOOGLE_API_KEY} \\\"'Content-Type: application/json' ' ''{' \\\"contents\\\": [ { \\\"parts\\\": [ {\\\"text\\\": \\\"Tell me a very long joke\\\"} ] } ] }' '\\n```\\n\\nI got back this:\", \"score\": 0.57035583, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"Models overview - Claude Docs\", \"url\": \"https://docs.claude.com/claude/docs/models-overview\", \"content\": \"Claude is a family of state-of-the-art large language models developed by Anthropic. This guide introduces our models and compares their performance.\\n\\n## Choosing a model [...] increase the maximum output token length to 128K tokens for Claude Sonnet 3.7. We strongly suggest using our streaming Messages API to avoid timeouts when generating longer outputs. See our guidance on long requests for more details.\", \"score\": 0.528461, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"Anthropic Claude 4: Evolution of a Large Language Model\", \"url\": \"https://intuitionlabs.ai/articles/anthropic-claude-4-llm-evolution\", \"content\": \"Model Size and Architecture: While Anthropic has not publicly disclosed the exact parameter count of Claude 4, it is believed to be a very large transformer model, likely on the order of tens of billions of parameters or more (comparable to or larger than Claude 2, which was around 52B parameters according to some reports). There are hints that Claude 4 involved a big increase in training compute for instance, rumors suggested Anthropic was testing a model with four times the training [...] scored only 54.6% on the same test, and Googles Gemini 2.5 Pro model scored 63.2% ( \\\"Highlights: Claude Opus 4 achieved a,4.1's 66.3\\\"). In other words, Claude 4 outperforms GPT-4 by nearly 18 percentage points on this coding benchmark, a massive margin in this context. On a related eval called Terminal-Bench (measuring coding in a terminal/command-line environment), Opus 4 also leads with 43.2%, whereas GPT-4.1 and Gemini were around 2530% ( \\\"Highlights: Claude Opus 4 achieved a,4.1's 66.3\\\"). [...] or describe the contents of a photograph in detail. On the MMMLU (Multilingual and Multimodal Language Understanding) benchmark, Claude 4 achieved around 8889%, which is comparable to Googles Gemini and slightly above GPT-4.1【53†. This indicates strong performance on tasks that mix text and images and involve multiple languages. While OpenAIs GPT-4 also has a vision mode (used in limited beta via their partnership with BeMyEyes), Anthropics inclusion of vision from Claude 3 onwards means\", \"score\": 0.51325434, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"Working with Gemini API: Text Gen, Doc Processing & Code Execution\", \"url\": \"https://obot.ai/resources/learning-center/google-gemini-api/\", \"content\": \"Google Gemini is a multi-modal large language model (LLM). It provides natural language and image processing capabilities to enable text generation, sentiment analysis, document processing, image and video analysis, and more. Using the Gemini API, developers can integrate AI functionalities into their applications without needing deep expertise in machine learning algorithms.\\n\\nThe Google Gemini API provides the following key features: [...] The `stream=True` parameter enables streaming, and the response is processed in chunks as the model generates the text. This approach is particularly useful in applications where immediate feedback is necessary, such as in chatbots or interactive systems.\\n\\n#### Build an Interactive Chat [...] For scenarios where you need faster interactions, the Gemini API supports text streaming. This allows you to start receiving parts of the response before the entire generation process is complete, which can be beneficial for real-time applications.\\n\\n```\\n model = genai.GenerativeModel(\\\"gemini-1.5-flash\\\") response = model.generate_content(\\\"Write a fairytale about an enchanted kettle.\\\", stream=True) for chunk in response: print(chunk.text) print(\\\"_\\\" 80) \\n```\", \"score\": 0.48221022, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"Comparing the streaming response structure for different LLM APIs\", \"url\": \"https://medium.com/percolation-labs/comparing-the-streaming-response-structure-for-different-llm-apis-2b8645028b41\", \"content\": \"And then for Google — the uri changes in this case from generateContent to streamGenerationContent and also we enable streaming with SSE as was the case for anthropic but this time in the url. We add parameter alt=sse\\n\\nComments [...] In a previous article I compared OpenAI, Google and Anthropic schemes in terms of their API response structures when function calling. In this article I will follow up with the streaming structures. I am doing this in preparation for my upcoming article on an adaptive streaming pattern which may be important for Percolate.\\n\\nLets take a look at what the payloads look like for each of the cases, calling a weather tool or simply generating a response\\n\\nAs before we create tools [...] For tool use cases with the OpenAI API, the first chunk announces tool use with one or more tools and the arguments are streamed thereafter. In this tool using case I personally would argue we are less interested in streaming because (a) the data are typically smaller (you would expect) (b) a user is not really going to grok a json function call. So although we handle both cases when streaming, its really the final content that we want to stream (most of the time).\", \"score\": 0.39061585, \"published_date\": \"\"}], \"total_results\": 5}",
"timestamp": "2025-11-08T11:34:17.589066",
"tool_call_id": "web_search:3",
"name": "web_search"
},
{
"role": "assistant",
"content": "基于我搜索到的信息我来为您详细解答关于OpenAPI标准中流式输出控制参数的问题。\n\n## 结论OpenAPI标准中没有控制单个chunk返回token数量的参数\n\n根据我的搜索结果**标准的OpenAPI规范中并没有提供用于控制流式输出单个chunk返回token数量的参数**。\n\n### 具体说明:\n\n1. **OpenAPI规范层面**\n - OpenAPI 3.0/3.1规范主要支持`maxLength`参数来设置流式响应的预期长度上限\n - 但没有定义控制单个chunk大小的具体参数\n\n2. **各大模型API实现**\n\n **OpenAI API**\n - 只有`stream=true`参数来启用流式输出\n - `max_tokens`控制的是总生成token数量不是单个chunk大小\n - **chunk大小由模型内部算法决定用户无法控制**\n\n **Anthropic Claude API**\n - 同样只有`stream=true`参数\n - 没有提供chunk大小控制参数\n\n **Google Gemini API**\n - 使用`stream=true`或`alt=sse`参数启用流式输出\n - 也没有提供chunk大小控制\n\n3. **chunk大小的实际情况**\n - 不同模型的chunk大小策略不同\n - Google Gemini通常返回较大的chunk\n - OpenAI和Anthropic的chunk相对较小\n - **chunk大小完全由模型服务端控制**\n\n### 总结:\n目前主流的大模型API包括OpenAI、Anthropic、Google等在流式输出时**都没有提供让用户控制单个chunk返回token数量的参数**。chunk的大小完全由模型的内部实现决定这是为了优化传输效率和用户体验的设计选择。\n\n如果您需要更细粒度的控制可能需要在应用层面对接收到的chunk进行缓存和处理。",
"timestamp": "2025-11-08T11:34:33.524002"
},
{
"role": "user",
"content": "但我注意到一个问题月之暗面的kimi模型也就是你在调用api时如果使用官方api返回和显示的结果是半行半行出现观感很差但如果使用的是第三方火山引擎的kimi模型发挥的结果就和正常的流式输出一样一个token一个token返回显示其他的比如openai和claude请求时也都是正常的流式输出效果请你帮我查一下社区上是否有其他人反馈这个月之暗面的这个问题",
"timestamp": "2025-11-08T11:37:24.640895"
},
{
"role": "assistant",
"content": "我来帮您搜索关于月之暗面Kimi模型API流式输出问题的社区反馈。",
"timestamp": "2025-11-08T11:37:28.477363"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-11-08T11:37:28.481521",
"tool_calls": [
{
"id": "web_search:4",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"月之暗面 Kimi API 流式输出 半行 问题 火山引擎\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: 月之暗面 Kimi API 流式输出 半行 问题 火山引擎\\n📅 搜索时间: 2025-11-08T11:37:33.908974\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nTo resolve streaming issues with Kimi API, enable stream=True. Use Partial Mode for continuation. Increase max_tokens for longer outputs.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. 常见问题及解决方案- Moonshot AI 开放平台- Kimi 大模型API 服务\\n 🔗 https://platform.moonshot.cn/docs/guide/faq\\n 📄 1. 程序代码或使用的 SDK 是否有默认的超时设置;\\n2. 是否有使用任何类型的代理服务器,并检查代理服务器的网络和超时设置;\\n3. 是否从海外服务器访问 Kimi API如果需要在海外请求 Kimi API我们推荐将 `base_url` 替换成:\\n\\n```\\n\\n```\\n\\n另一种可能导致 `Connection` 相关错误的场景是,未启用流式输出 `stream=True` 时Kimi 大...\\n\\n2. 使用Kimi API 的流式输出功能—— Streaming - Moonshot AI 开放平台\\n 🔗 https://platform.moonshot.cn/docs/guide/utilize-the-streaming-output-feature-of-kimi-api\\n 📄 ## \\n\\n当您成功运行上述代码并了解了流式输出的基本原理后现在让我们向你讲述一些流式输出的细节和常见问题以便于你更好的实现自己的业务逻辑。\\n\\n### \\n\\n当启用流式输出模式stream=TrueKimi 大模型不再返回一个 JSON 格式(`Content-Type: application/json`)的响应,而是使用 `Content-Type: text/event-strea...\\n\\n3. 使用Kimi API 完成工具调用tool_calls - Moonshot AI 开放平台\\n 🔗 https://platform.moonshot.cn/docs/guide/use-kimi-api-to-complete-tool-calls\\n 📄 常见问题及注意事项}\\\",\\n}\\n \\ndata = {\\n \\\"model\\\": \\\"kimi-k2-turbo-preview\\\",\\n \\\"messages\\\": [\\n {\\\"role\\\": \\\"user\\\", \\\"content\\\": \\\"请联网搜索 Context Caching 技术。\\\"}\\n ],\\n \\\"temperature\\\": 0.6,\\n \\\"stream\\\": True,\\n ...\\n\\n4. 大模型API - 百度AI开放平台\\n 🔗 https://ai.baidu.com/ai-doc/AISTUDIO/rm344erns\\n 📄 | ERNIE Speed | ernie-speed-8k | 8k | 6k | [22048] 默认 1k |\\n| ERNIE Speed | ernie-speed-128k | 128k | 124k | [24096] 默认 4k |\\n| ERNIE Tiny | ernie-tiny-8k | 8k | 6k | [22048] 默认 1k |\\n| ERNIE Lite | e...\\n\\n5. Vue3 封装AI 问答组件实现AI 流式回答问题-腾讯云开发者社区\\n 🔗 https://cloud.tencent.com/developer/article/2564444\\n 📄 不要在前端直接暴露API密钥\\n 建议通过后端代理API请求\\n 使用环境变量管理敏感信息\\n\\n##### (二)后端代理示例\\n\\n代码语言javascript\\n\\n复制 [...] ``` [...] ```\", \"filters\": {\"topic\": \"general\"}, \"query\": \"月之暗面 Kimi API 流式输出 半行 问题 火山引擎\", \"results\": [{\"index\": 1, \"title\": \"常见问题及解决方案- Moonshot AI 开放平台- Kimi 大模型API 服务\", \"url\": \"https://platform.moonshot.cn/docs/guide/faq\", \"content\": \"1. 程序代码或使用的 SDK 是否有默认的超时设置;\\n2. 是否有使用任何类型的代理服务器,并检查代理服务器的网络和超时设置;\\n3. 是否从海外服务器访问 Kimi API如果需要在海外请求 Kimi API我们推荐将 `base_url` 替换成:\\n\\n```\\n\\n```\\n\\n另一种可能导致 `Connection` 相关错误的场景是,未启用流式输出 `stream=True` 时Kimi 大模型生成的 Tokens 数量过多,导致在等待 Kimi 大模型生成过程时,触发了某个中间环节网关的超时时间设置。通常,某些网关应用会通过检测是否接收到服务器端返回的 `status_code` 和 `header` 来判断当前请求是否有效,在不使用流式输出 `stream=True` 的场合Kimi 服务端会等待 Kimi 大模型生成完毕后发送 `header`,在等待 `header` 返回时,某些网关应用会关闭等待时间过长的连接,进而产生 `Connection` 相关错误。\\n\\n我们推荐启用流式输出 `stream=True` 来尽可能减少 `Connection` 相关错误。 [...] 在遇到 `finish_reason=length` 时,如果你想让 Kimi 大模型接着上一次返回的内容继续输出,可以使用 Kimi API 提供的 Partial Mode详细的文档请参考\\n\\n使用 Kimi API 的 Partial Mode\\n\\n如果你想避免出现 `finish_reason=length`,我们建议你放大 `max_tokens` 的值,我们推荐的最佳实践是:\\\\\\\\通过 estimate-token-count (opens in a new tab) 接口计算输入内容的 Tokens 数量,随后使用 Kimi 大模型所支持的最大 Tokens 数量(例如,对于 `moonshot-v1-32k` 模型,它最大支持 32k Tokens则可以设置的最大请求的 `max_tokens` 值是 32k \\\\\\\\。\\n\\n## [...] 对于要求输出内容字数在 1000 字以内的场合:\\n 1. 在提示词 prompt 中向 Kimi 大模型明确输出的字数;\\n 2. 通过人工或程序手段检测输出的字数是否符合预期,如果不符合预期,通过在第二轮对话中向 Kimi 大模型指示“字数多了”或“字数少了”,让 Kimi 大模型输出新一轮的内容。\\n 对于要求输出内容字数在 1000 字以上甚至更多时:\\n 1. 尝试将预期输出的内容按结构或章节切割成若干部分,并制成模板,并使用占位符标记想要 Kimi 大模型输出内容的位置;\\n 2. 让 Kimi 大模型按照模板,逐个填充每个模板的占位符部分,最终拼装成完整的长文文本。\\n\\n## \\n\\n通常OpenAI 提供的 SDK 包含了重试机制:\", \"score\": 0.57035583, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"使用Kimi API 的流式输出功能—— Streaming - Moonshot AI 开放平台\", \"url\": \"https://platform.moonshot.cn/docs/guide/utilize-the-streaming-output-feature-of-kimi-api\", \"content\": \"## \\n\\n当您成功运行上述代码并了解了流式输出的基本原理后现在让我们向你讲述一些流式输出的细节和常见问题以便于你更好的实现自己的业务逻辑。\\n\\n### \\n\\n当启用流式输出模式stream=TrueKimi 大模型不再返回一个 JSON 格式(`Content-Type: application/json`)的响应,而是使用 `Content-Type: text/event-stream`(简称 SSE这种响应格式支持服务端源源不断地向客户端传输数据在使用 Kimi 大模型的场景,可以理解为服务端源源不断地向客户端传输 Tokens。\\n\\n当你查看 SSE (opens in a new tab) 的 HTTP 响应体时,它看起来像这样: [...] 以上是以 Python 为例的流式输出处理流程,如果你使用其他语言,也可以正确处理流式输出的内容,其基本步骤如下:\\n\\n1. 发起 HTTP 请求,并在请求体中,将 `stream` 参数设置为 `true`\\n2. 接收服务端返回的响应,注意到响应 `Headers` 中的 `Content-Type` 为 `text/event-stream`,则说明当前响应内容为流式输出;\\n3. 逐行读取响应内容并解析数据块(数据块以 JSON 格式呈现),注意通过 `data:` 前缀及换行符 `\\\\n` 来判断数据块的开始位置和结束位置;\\n4. 通过判断当前数据块内容是否为 `[DONE]` 来判断是否已传输完成;\\n\\n注意请始终使用 `data: [DONE]` 来判断数据是否已传输完成,而不是使用 `finish_reason` 或其他方式。如果未接收到 `data: [DONE]` 的消息块,即使已经获取了 `finish_reason=stop` 的信息,也不应视作数据块传输已完成。换句话说,在未接收到 `data: [DONE]` 的数据块前,都应视作消息是不完整的。 [...] 当 `n>1` 时,处理流式输出的要点在于,你需要先根据数据块的 `index` 值来判断当前数据块的内容归属于第几个回复消息,再进行后续的逻辑处理。\\n\\n自动断线重连使用 Tool Calls\", \"score\": 0.54753727, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"使用Kimi API 完成工具调用tool_calls - Moonshot AI 开放平台\", \"url\": \"https://platform.moonshot.cn/docs/guide/use-kimi-api-to-complete-tool-calls\", \"content\": \"常见问题及注意事项}\\\",\\n}\\n \\ndata = {\\n \\\"model\\\": \\\"kimi-k2-turbo-preview\\\",\\n \\\"messages\\\": [\\n {\\\"role\\\": \\\"user\\\", \\\"content\\\": \\\"请联网搜索 Context Caching 技术。\\\"}\\n ],\\n \\\"temperature\\\": 0.6,\\n \\\"stream\\\": True,\\n \\\"n\\\": 2, # <-- 注意这里,我们要求 Kimi 大模型输出 2 个回复\\n \\\"tools\\\": tools, # <-- 添加工具调用\\n}\\n \\n# 使用 httpx 向 Kimi 大模型发出 chat 请求,并获得响应 r\\nr = httpx.post(\\\"\\n headers=header,\\n json=data)\\nif r.status_code != 200:\\n raise Exception(r.text)\\n \\ndata: str [...] 以下是使用 openai SDK 处理流式输出中的 `tool_calls` 的代码示例:\\n\\npython node.js [...] ### 关于 `tool_calls` 和 `function_call`` 来将 Kimi API 返回的消息添加到消息列表中,以避免出现 `tool_call_id not found` 错误。\\n\\n_注意添加到 messages 列表中位于 `role=tool` 的 message 之前的 assistant messages必须完整包含 Kimi API 返回的 `tool\\\\_calls` 字段及字段值。我们推荐直接将 Kimi API 返回的 `choice.message` “原封不动”地添加到 messages 列表中以避免可能产生的错误。_\\n\\nLast updated on 2025年10月28日\\n\\n使用 Stream 流式输出使用联网搜索 Tool\", \"score\": 0.42348245, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"大模型API - 百度AI开放平台\", \"url\": \"https://ai.baidu.com/ai-doc/AISTUDIO/rm344erns\", \"content\": \"| ERNIE Speed | ernie-speed-8k | 8k | 6k | [22048] 默认 1k |\\n| ERNIE Speed | ernie-speed-128k | 128k | 124k | [24096] 默认 4k |\\n| ERNIE Tiny | ernie-tiny-8k | 8k | 6k | [22048] 默认 1k |\\n| ERNIE Lite | ernie-lite-8k | 8k | 6k | [22048] 默认 1k |\\n| Kimi-K2 | kimi-k2-instruct | 128k | 128k | [132768] 默认 4k |\\n| Qwen3-Coder | qwen3-coder-30b-a3b-instruct | 128k | 128k | [132768] 默认 4k | [...] | stream | bool | 否 | 是否以流式接口的形式返回数据,说明: 1beam search模型只能为false 2默认false | 是 |\\n| temperature | float | 否 | 说明: 1较高的数值会使输出更加随机而较低的数值会使其更加集中和确定 2默认0.95,范围 (0, 1.0]不能为0 3不支持以下模型 · deepSeek-v3 · deepSeek-r1 · ernie-x1-32k-preview | 是 |\\n| top\\\\_p | float | 否 | 说明: 1影响输出文本的多样性取值越大生成文本的多样性越强 2默认0.7,取值范围 [0, 1.0] 3不支持以下模型 · deepSeek-v3 · deepSeek-r1 · ernie-x1-32k-preview | 是 | [...] ### 5.2 流式输出\\n\\n```\\nimport from import =(=..(\\\"AI_STUDIO_API_KEY\\\"),# 含有 AI Studio 访问令牌的环境变量, =\\\" # aistudio 大模型 api 服务域名) =...(=\\\"ernie-3.5-8k\\\", =[{'role': 'system', 'content': '你是 AI Studio 实训AI开发平台的开发者助理你精通开发相关的知识负责给开发者提供搜索帮助建议。'},{'role': 'user', 'content': '你好请介绍一下AI Studio'}], = True,) for in: print(... or \\\"\\\", = \\\"\\\")\\n```\\n\\n### 5.3 异步调用\", \"score\": 0.13038528, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"Vue3 封装AI 问答组件实现AI 流式回答问题-腾讯云开发者社区\", \"url\": \"https://cloud.tencent.com/developer/article/2564444\", \"content\": \"不要在前端直接暴露API密钥\\n 建议通过后端代理API请求\\n 使用环境变量管理敏感信息\\n\\n##### (二)后端代理示例\\n\\n代码语言javascript\\n\\n复制 [...] ``` [...] ```\", \"score\": 0.1015629, \"published_date\": \"\"}], \"total_results\": 5}",
"timestamp": "2025-11-08T11:37:33.912909",
"tool_call_id": "web_search:4",
"name": "web_search"
},
{
"role": "assistant",
"content": "让我搜索更多关于Kimi API流式输出chunk大小问题的社区反馈",
"timestamp": "2025-11-08T11:37:38.858058"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-11-08T11:37:38.870038",
"tool_calls": [
{
"id": "web_search:5",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"\\\"Kimi API\\\" \\\"chunk size\\\" \\\"streaming\\\" \\\"half line\\\" \\\"token by token\\\" moonshot\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: \\\"Kimi API\\\" \\\"chunk size\\\" \\\"streaming\\\" \\\"half line\\\" \\\"token by token\\\" moonshot\\n📅 搜索时间: 2025-11-08T11:37:43.809469\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nKimi API uses chunk size for streaming output, processes responses token by token, and supports half-line processing.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Siliconflow Kimi-K2 on SiliconFlow: Tailored for AI Agents, Priced to Scale\\n 🔗 https://www.siliconflow.com/blog/kimi-k2-on-siliconflow-tailored-for-ai-agents-priced-to-scale\\n 📄 # Send a request with streaming output\\ncontent = \\\"\\\"\\nreasoning_content = \\\"\\\"\\nmessages = [\\n {\\\"role\\\": \\\"user\\\", \\\"content\\\": \\\"Explain the concept of gravitational waves in Chinese?\\\"}\\n]\\nresponse = client.ch...\\n\\n2. GitHub GitHub - MoonshotAI/Kimi-K2: Kimi K2 is the large language model series developed by Moonshot AI team\\n 🔗 https://github.com/MoonshotAI/Kimi-K2\\n 📄 Once the local inference service is set up, you can interact with it through the chat endpoint:\\n\\n```\\ndef simple_chat client OpenAI model_name str messages = \\\"role\\\" \\\"system\\\" \\\"content\\\"\\\"You are Kimi, an ...\\n\\n3. Together AI Kimi K2 Instruct API | Together AI\\n 🔗 https://www.together.ai/models/kimi-k2-instruct\\n 📄 ```\\ncurl -X POST \\\\\\n -H \\\"Content-Type: application/json\\\" \\\\\\n -H \\\"Authorization: Bearer $TOGETHER_API_KEY\\\" \\\\\\n -d '{\\n \\\"model\\\": \\\"moonshotai/Kimi-K2-Instruct\\\",\\n \\\"messages\\\": [{\\n \\\"role\\\": \\\"user\\\"...\\n\\n4. Hugging Face moonshotai/Kimi-K2-Instruct · Hugging Face\\n 🔗 https://huggingface.co/moonshotai/Kimi-K2-Instruct\\n 📄 ```\\ndef simple_chat(client: OpenAI, model_name: str):\\n messages = [\\n {\\\"role\\\": \\\"system\\\", \\\"content\\\": \\\"You are Kimi, an AI assistant created by Moonshot AI.\\\"},\\n {\\\"role\\\": \\\"user\\\", \\\"content...\\n\\n5. OpenRouter MoonshotAI: Kimi K2 0711 Run with an API | OpenRouter\\n 🔗 https://openrouter.ai/moonshotai/kimi-k2/api\\n 📄 Kimi K2 Instruct is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It is optimized for a...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"\\\"Kimi API\\\" \\\"chunk size\\\" \\\"streaming\\\" \\\"half line\\\" \\\"token by token\\\" moonshot\", \"results\": [{\"index\": 1, \"title\": \"Siliconflow Kimi-K2 on SiliconFlow: Tailored for AI Agents, Priced to Scale\", \"url\": \"https://www.siliconflow.com/blog/kimi-k2-on-siliconflow-tailored-for-ai-agents-priced-to-scale\", \"content\": \"# Send a request with streaming output\\ncontent = \\\"\\\"\\nreasoning_content = \\\"\\\"\\nmessages = [\\n {\\\"role\\\": \\\"user\\\", \\\"content\\\": \\\"Explain the concept of gravitational waves in Chinese?\\\"}\\n]\\nresponse = client.chat.completions.create(\\n model=\\\"moonshotai/Kimi-K2-Instruct\\\",\\n messages=messages,\\n stream=True, # Enable streaming output\\n max_tokens=8192\\n)\\n# Gradually receive and process the response\\nfor chunk in response:\\n if chunk.choices.delta.content: [...] MoonShot AI's powerful open-source Kimi K2 Mixture-of-Experts (MoE) model is now available on SiliconFlow. Developers can seamlessly integrate this model featuring 32B activated parameters and 1 trillion total parameters via SiliconFlow's production-ready API to build advanced coding tools and agentic applications.\\n\\nSiliconFlow supports:\", \"score\": 0.5911811, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"GitHub GitHub - MoonshotAI/Kimi-K2: Kimi K2 is the large language model series developed by Moonshot AI team\", \"url\": \"https://github.com/MoonshotAI/Kimi-K2\", \"content\": \"Once the local inference service is set up, you can interact with it through the chat endpoint:\\n\\n```\\ndef simple_chat client OpenAI model_name str messages = \\\"role\\\" \\\"system\\\" \\\"content\\\"\\\"You are Kimi, an AI assistant created by Moonshot AI.\\\" \\\"role\\\" \\\"user\\\" \\\"content\\\" \\\"type\\\" \\\"text\\\" \\\"text\\\"\\\"Please give a brief self-introduction.\\\" response = client chat completions create model = model_name messages = messages stream = False temperature =0.6 max_tokens = 256 print response choices 0 message content\\n``` [...] |\\n| |\\n| Architecture | Mixture-of-Experts (MoE) |\\n| Total Parameters | 1T |\\n| Activated Parameters | 32B |\\n| Number of Layers (Dense layer included) | 61 |\\n| Number of Dense Layers | 1 |\\n| Attention Hidden Dimension | 7168 |\\n| MoE Hidden Dimension (per Expert) | 2048 |\\n| Number of Attention Heads | 64 |\\n| Number of Experts | 384 |\\n| Selected Experts per Token | 8 |\\n| Number of Shared Experts | 1 |\\n| Vocabulary Size | 160K |\\n| Context Length | 128K |\\n| Attention Mechanism | MLA | [...] ```\", \"score\": 0.41250706, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"Together AI Kimi K2 Instruct API | Together AI\", \"url\": \"https://www.together.ai/models/kimi-k2-instruct\", \"content\": \"```\\ncurl -X POST \\\\\\n -H \\\"Content-Type: application/json\\\" \\\\\\n -H \\\"Authorization: Bearer $TOGETHER_API_KEY\\\" \\\\\\n -d '{\\n \\\"model\\\": \\\"moonshotai/Kimi-K2-Instruct\\\",\\n \\\"messages\\\": [{\\n \\\"role\\\": \\\"user\\\",\\n \\\"content\\\": [\\n {\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"Describe what you see in this image.\\\"},\\n {\\\"type\\\": \\\"image_url\\\", \\\"image_url\\\": {\\\"url\\\": \\\"\\n ]\\n }],\\n \\\"max_tokens\\\": 512\\n }'\\n\\n``` [...] Chunk very long contexts: 128K is huge, but response speed drops on >100K inputs; supply a short executive brief in the final user message to focus the model. [...] Model Provider:\\n\\nMoonshot AI\\n\\nChat\\n\\n1 Trillion (32 B activated)\\n\\nContext length:\\n\\n128K tokens\\n\\nResolution / Duration\\n\\n$1.00 input / $3.00 output\\n\\nCheck pricingRun in playgroundDeploy model\\n\\nDeploy model\\n\\nQuickstart docsQuickstart docs\", \"score\": 0.38588423, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"Hugging Face moonshotai/Kimi-K2-Instruct · Hugging Face\", \"url\": \"https://huggingface.co/moonshotai/Kimi-K2-Instruct\", \"content\": \"```\\ndef simple_chat(client: OpenAI, model_name: str):\\n messages = [\\n {\\\"role\\\": \\\"system\\\", \\\"content\\\": \\\"You are Kimi, an AI assistant created by Moonshot AI.\\\"},\\n {\\\"role\\\": \\\"user\\\", \\\"content\\\": [{\\\"type\\\": \\\"text\\\", \\\"text\\\": \\\"Please give a brief self-introduction.\\\"}]},\\n ]\\n response = client.chat.completions.create(\\n model=model_name,\\n messages=messages,\\n stream=False,\\n temperature=0.6,\\n max_tokens=256\\n ) [...] | | |\\n --- |\\n| Architecture | Mixture-of-Experts (MoE) |\\n| Total Parameters | 1T |\\n| Activated Parameters | 32B |\\n| Number of Layers (Dense layer included) | 61 |\\n| Number of Dense Layers | 1 |\\n| Attention Hidden Dimension | 7168 |\\n| MoE Hidden Dimension (per Expert) | 2048 |\\n| Number of Attention Heads | 64 |\\n| Number of Experts | 384 |\\n| Selected Experts per Token | 8 |\\n| Number of Shared Experts | 1 |\\n| Vocabulary Size | 160K |\\n| Context Length | 128K |\\n| Attention Mechanism | MLA | [...] The `tool_call_with_client` function implements the pipeline from user query to tool execution.\\nThis pipeline requires the inference engine to support Kimi-K2s native tool-parsing logic.\\nFor streaming output and manual tool-parsing, see the Tool Calling Guide.\\n\\n## 6. License\\n\\nBoth the code repository and the model weights are released under the Modified MIT License.\\n\\n## 7. Third Party Notices\\n\\nSee THIRD PARTY NOTICES\\n\\n## 7. Contact Us\", \"score\": 0.3825571, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"OpenRouter MoonshotAI: Kimi K2 0711 Run with an API | OpenRouter\", \"url\": \"https://openrouter.ai/moonshotai/kimi-k2/api\", \"content\": \"Kimi K2 Instruct is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. Kimi K2 excels across a broad range of benchmarks, particularly in coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) tasks. It supports long-context inference up to 128K [...] # MoonshotAI: Kimi K2 0711\\n\\n### moonshotai/kimi-k2\\n\\nCreated Jul 11, 202563,000 context\\n\\n$0.14/M input tokens$2.49/M output tokens [...] tokens and is designed with a novel training stack that includes the MuonClip optimizer for stable large-scale MoE training.\", \"score\": 0.32811, \"published_date\": \"\"}], \"total_results\": 5}",
"timestamp": "2025-11-08T11:37:43.814185",
"tool_call_id": "web_search:5",
"name": "web_search"
},
{
"role": "assistant",
"content": "让我搜索更多关于Kimi官方API与第三方平台流式输出差异的社区讨论",
"timestamp": "2025-11-08T11:37:46.727611"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-11-08T11:37:46.732372",
"tool_calls": [
{
"id": "web_search:6",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"\\\"月之暗面\\\" \\\"Kimi\\\" \\\"官方API\\\" \\\"流式输出\\\" \\\"chunk\\\" \\\"火山引擎\\\" 差异\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: \\\"月之暗面\\\" \\\"Kimi\\\" \\\"官方API\\\" \\\"流式输出\\\" \\\"chunk\\\" \\\"火山引擎\\\" 差异\\n📅 搜索时间: 2025-11-08T11:37:53.327900\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\n\\\"月之暗面\\\" is a Chinese AI company known for its Kimi model. Kimi offers long context length and various API options. The model's latest version supports up to 128k tokens.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. CSDN 月之暗面MoonShot(Kimi)的API的注册和使用_月之暗面api-CSDN博客\\n 🔗 https://blog.csdn.net/quickrubber/article/details/146060318\\n 📄 使用关于歌手李健的一些问答进行对比。整体感觉ChatGPT思维更清晰逻辑更严谨总结概括能力更强。\\n\\ngolang调用Moonshot API\\n\\nweixin\\\\_43156294的博客\\n\\n12-23 249\\n\\nMoonshot的文本生成模型指moonshot-v1是训练用于理解自然语言和书面语言的它可以根据输入生成文本输出。以下案例采用字符串输入“你好我是极深数据。请问1+10等于多...\\n\\n2. Sina Finance 深夜突袭万亿参数MoE模型Kimi K2上线即开源月之暗面能否重归C位|AI_新浪财经_新浪网\\n 🔗 https://finance.sina.com.cn/roll/2025-07-13/doc-inffikpm7017615.shtml\\n 📄 月之暗面在官方介绍中称在SWE Bench Verified、Tau2、AceBench等基准性能测试中Kimi K2均取得开源模型中的SOTAstate-of-the-art成绩。在其公布的测评结果中Kimi K2在Agentic Coding自主编程、Tool Use工具调用和Math&Reasoning数学推理三个维度的表现上均超过了同为开源模型的DeepSeek-V3...\\n\\n3. 如何评价月之暗面科技旗下的AI模型「Kimi」智能助手 - 知乎\\n 🔗 https://www.zhihu.com/question/649409277/answers/updated\\n 📄 1. Kimi k1.5: 于2025年1月发布是月之暗面在推理能力上取得重大突破的模型宣称在数学、编码和多模态推理方面达到OpenAI o1模型的水平 1。\\n2. Kimi-VL系列: 约在2025年4月左右讨论是月之暗面推出的开源视觉语言模型系列包括Kimi-VL-A3B-Instruct面向通用多模态任务和高效推理和Kimi-VL-A3B-Thinking专注于高级多模...\\n\\n4. 如何评价月之暗面科技旗下的AI模型「Kimi」智能助手 - 知乎\\n 🔗 https://www.zhihu.com/question/649409277\\n 📄 我一直认为如果一个人的目的真的是想找个AI来用那关注跑分和评测的意义其实不大。\\n\\n因为一个人觉得谁好用取决于他用来做什么而不是取决于统一基准评测。\\n\\nKimi对于文字类工作者来说体验感明显比其他的更好。\\n\\n你去找个做新媒体的问问说Kimi好的绝对最多。\\n\\n说话没有其他AI那么硬prompt再写好一点就十分可用了。\\n\\n之前的回答里面我也列了一些使用Kimi的其他场景。\\n\\n这些情况下都...\\n\\n5. 360doc 月之暗面kimi底层推理系统方案揭秘\\n 🔗 http://www.360doc.com/content/24/0705/08/46368139_1128000039.shtml\\n 📄 相对计算密集这一部分也承担着抬高整体资源利用率的任务。Prefill 处理完之后对应的 KVCache 会被送到 Decode Pool 进行 autoregression 式的流式输出。虽然我们希望尽可能攒大的 batch 以提升 MFU但这一部分主要需要对 Time Between Tokens (TBT) 负责。 Mooncake 架构 这里我们使用 TBT 而非另外一些工作中常用的...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"\\\"月之暗面\\\" \\\"Kimi\\\" \\\"官方API\\\" \\\"流式输出\\\" \\\"chunk\\\" \\\"火山引擎\\\" 差异\", \"results\": [{\"index\": 1, \"title\": \"CSDN 月之暗面MoonShot(Kimi)的API的注册和使用_月之暗面api-CSDN博客\", \"url\": \"https://blog.csdn.net/quickrubber/article/details/146060318\", \"content\": \"使用关于歌手李健的一些问答进行对比。整体感觉ChatGPT思维更清晰逻辑更严谨总结概括能力更强。\\n\\ngolang调用Moonshot API\\n\\nweixin\\\\_43156294的博客\\n\\n12-23 249\\n\\nMoonshot的文本生成模型指moonshot-v1是训练用于理解自然语言和书面语言的它可以根据输入生成文本输出。以下案例采用字符串输入“你好我是极深数据。请问1+10等于多少运行后生成了正确的对话输出。\\n\\n月之暗面Moonshot AI接口总结\\n\\n采菊东篱下Python满乾坤\\n\\n02-23 1万+\\n\\n开发者们只需访问便能创建自己的 API Key进而将 Kimi 智能助手背后的同款 moonshot 模型能力如长文本处理和出色的指令遵循等集成至自己的产品中。这不仅增强了现有产品的功能更为开发者们提供了打造全新、富有创意的产品的机会。除了核心的对话问答功能外Moonshot AI 开放平台还提供了“文件内容提取”能力接口。这一功能使得开发者们能够结合文件上传功能,开发出针对文档和知识库场景的多样化应用。 [...] 例如,你可能向 ChatCompletions 发送了 20 个请求,每个请求只有 100 个 Token ,那么你就达到了限制(如果你的 RPM 限制是 20即使你在这些 20 个请求中没有发满 200k 个 Token 假设你的TPM限制是 200k。在这种模式下我们会返回一个 SSE 流,你可以在这个流中获取生成的文本,这样用户体验可能会更好,并且你也可以在任何时候中断请求,而不会浪费资源。以上模型的区别在于它们的最大上下文长度,这个长度包括了输入消息和生成的输出,在效果上并没有什么区别。\\n\\n第三回 使用HttpClient小工具(Http客户端工具)模拟月之暗面Kimi网页端的流式返回。免费调用月之暗面网页API与AI(Kimi)对话!\\n\\n天天智作\\n\\n06-14 1381\\n\\n全能型Http客户端工具(HttpClient)比Postman还好用快速调试Http API、快速形成测试用例、极大提高开发和测试效率\\n\\nMoonshot AI API使用(3)-ChatGPT和kimi对比\\n\\nweixin\\\\_40566713的博客\\n\\n06-10 1581 [...] 09-09 1804\\n\\n该文章使用月之暗面旗下的KIMI AI进行调试这边采用的流式方式处理AI自由对话逻辑只提供部分核心调用代码详细操作需要自行修改API文档链接放在文章第一行需要自取。\\n\\n参与评论 您还未登录,请先 登录 后发表或查看评论\\n\\n月之暗面的野心全在“长上下文”里moonshot kimi api key获取以及解构Kimi K2深度指南\\n\\n最新发布\\n\\niduiui997的博客\\n\\n07-18 1095\\n\\n但我们不只看代码和参数我更想带你看看这家被资本捧上“AI 猛虎”宝座的公司,是如何把创始人的学术理想,一步步变成一个让所有开发者都能触碰的、强大的 AI 工具。资本的疯狂追捧像一张VIP门票让月之暗面在中国 AI 这场激烈的牌局里稳稳地坐上了“猛虎”的席位。去感受一下它那“工程师”般严谨可靠的性格去利用它那“行动派”的特质构建你自己的自动化工具去享受它那“白菜价”带来的创新自由。只有拥有一个容量巨大且稳定可靠的记忆库AI 才能从一个“会说话的鹦鹉”,蜕变成一个真正“能解决问题的专家”。\", \"score\": 0.64182705, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"Sina Finance 深夜突袭万亿参数MoE模型Kimi K2上线即开源月之暗面能否重归C位|AI_新浪财经_新浪网\", \"url\": \"https://finance.sina.com.cn/roll/2025-07-13/doc-inffikpm7017615.shtml\", \"content\": \"月之暗面在官方介绍中称在SWE Bench Verified、Tau2、AceBench等基准性能测试中Kimi K2均取得开源模型中的SOTAstate-of-the-art成绩。在其公布的测评结果中Kimi K2在Agentic Coding自主编程、Tool Use工具调用和Math&Reasoning数学推理三个维度的表现上均超过了同为开源模型的DeepSeek-V3和阿里Qwen3。值得一提的是Kimi评测中的所有模型均为非思考模型的Kimi-K2-Instruct。\\n\\n  目前Kimi K2的API应用程序编程接口服务已上线支持最长128K上下文计费方案为4元/百万“输入”tokens大模型处理文本时的最小单位16元/百万“输出”tokens兼容OpenAI和Anthropic两种API格式。\\n\\n  为了体现Kimi K2在代码、Agent工具调用、风格化写作三项能力上的提升月之暗面也给出了具体任务下的展示。在前端开发任务中Kimi K2支持粒子系统、可视化和3D三维场景等表现形式。 [...] 知名经济学者、工信部信息通信经济专家委员会委员盘和林在接受《每日经济新闻》记者微信采访时对Kimi上半年的努力进行了分析。在他看来Kimi的努力方向是对的但还不够Kimi需要将自己的AI嵌入到一个生态当中。如今互联网平台各大生态是封闭的比如电商的AI可以帮助商家设计网站自媒体的AI能够帮助自媒体制作视频那么Kimi的目标用户是谁这方面需要Kimi自己明确。\\n\\n  此外记者注意到各家今年在升级大模型的时候往往也会“卷”到价格。\\n\\n  6月17日MiniMax发布MiniMax-M1系列模型并以token范围分段定价。在0~12.8万token范围内据官方介绍其定价均低于DeepSeek-R1。\\n\\n  6月11日豆包大模型1.6正式发布时火山引擎总裁谭待现场表示豆包1.6首创按“输入长度”区间定价深度思考、多模态能力与基础语言模型统一价格。豆包1.6的综合成本只有豆包1.5深度思考模型或DeepSeek-R1的三分之一。 [...] 随后记者进一步提出将规划以HTML格式呈现Kimi K2在随后交付的网页中补充了一些票务的信息并完成了“图文并茂”的需求。不过与官方演示的案例相比网页整体的呈现质量还较为粗糙。\\n\\n每经记者实测Kimi K2 图片来源Kimi K2 截图\\n\\n  值得一提的是此前记者还使用类似的提示词测试过字节的扣子空间。对比两次测试结果可以发现扣子空间在网页的设计上完成度更高、更为美观。Kimi K2虽然在此略逊一筹但旅游攻略制定上更为详细给出了包括餐厅、景点在内的详细信息还有如“交通卡当地退卡避免异地手续费”等注意事项。\\n\\n  此外本次Kimi还特别展示了Kimi K2对文字输出风格的掌控并且在虚构写作任务中官方还表示Kimi K2生成的文字更关注细节与情感不再是抽象泛泛而谈。记者也以2025年北京高考的作文题目“数字闪耀时”为例假设Kimi K2为高中生完成一篇一类的记叙文。从完成结果上来说整体呈现效果良好但在最后收尾的部分隐约透露出一些“AI味”。\\n\\n由Kimi K2撰写的北京高考作文 图片来源Kimi K2 截图\", \"score\": 0.533714, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"如何评价月之暗面科技旗下的AI模型「Kimi」智能助手 - 知乎\", \"url\": \"https://www.zhihu.com/question/649409277/answers/updated\", \"content\": \"1. Kimi k1.5: 于2025年1月发布是月之暗面在推理能力上取得重大突破的模型宣称在数学、编码和多模态推理方面达到OpenAI o1模型的水平 1。\\n2. Kimi-VL系列: 约在2025年4月左右讨论是月之暗面推出的开源视觉语言模型系列包括Kimi-VL-A3B-Instruct面向通用多模态任务和高效推理和Kimi-VL-A3B-Thinking专注于高级多模态推理15。\\n3. Kimi Latest (API标识符): 该API模型标识符指向Kimi智能助手产品当前使用的最新模型可能包含尚未完全稳定的实验性特性并会随产品同步更新 19。\\n\\nKimi的发展历程中上下文长度的扩展是一个显著特征。从2023年10月最初支持的20万汉字到2024年3月宣称能处理高达200万汉字再到Kimi k1.5和Kimi-VL普遍采用的128k tokens上下文窗口展示了其在长文本处理能力上的持续演进 1。 [...] API 可用性与开放性 (API Availability & Openness): 虽然Kimi-VL模型已开源 15但访问最新、最强模型如Kimi k1.5的长思考版本的API可能受到限制或是分级收费 19。早期用户曾遇到k1.5 API不可用的情况 52。 [...] 然而对于最新的、技术报告更详尽的Kimi k1.5和Kimi-VL模型以及其API服务所一致标称的最大上下文窗口长度为128,000 tokens (128k) 13。\\n 这表明尽管早期有更高的汉字数量宣传但128k tokens是当前这些先进模型稳定运行和通过RL技术优化的实际工程上限。200万汉字可能是基于特定中文文本压缩率在128k token限制下的估算或者是早期实验性版本的数据。在进行技术比较时应以128k tokens为准。这也暗示了进一步大幅扩展上下文长度可能需要新的技术突破。API接口提供了8k、32k和128k等不同长度选项供用户根据需求选择 19。\\n\\n### E. 训练方法论\\n\\nKimi模型的训练通常遵循一个多阶段流程并结合了月之暗面的特定技术\", \"score\": 0.47533798, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"如何评价月之暗面科技旗下的AI模型「Kimi」智能助手 - 知乎\", \"url\": \"https://www.zhihu.com/question/649409277\", \"content\": \"我一直认为如果一个人的目的真的是想找个AI来用那关注跑分和评测的意义其实不大。\\n\\n因为一个人觉得谁好用取决于他用来做什么而不是取决于统一基准评测。\\n\\nKimi对于文字类工作者来说体验感明显比其他的更好。\\n\\n你去找个做新媒体的问问说Kimi好的绝对最多。\\n\\n说话没有其他AI那么硬prompt再写好一点就十分可用了。\\n\\n之前的回答里面我也列了一些使用Kimi的其他场景。\\n\\n这些情况下都是我使用过的AI里面比较好用的甚至在免费产品里面可以说是拔尖的。\\n\\n但是我也一直说Kimi给我的感觉像是一个文科生。\\n\\n分析归纳做的很好数理化却相对一般甚至数数经常数不对。\\n\\n那咋办用别的呗。\\n\\n你是在用AI又不是要跟AI结婚手长在你自己身上。\\n\\n> 问题: \\n> 氧气的化学性质比较活泼,能与多种物质发生化学反应。 A.磷 B.硫 C.碳 D.铁丝 E.氢气 F.甲烷 G.乙醇,这几种物质在氧气中燃烧, \\n> 产物是固体的是哪些? \\n> 产生火焰的有哪些? \\n> 产物有水生成的是哪些? \\n> 产物只有气体的是哪些?\\n\\nGPT3.5\\n\\nKimi [...] 文心一言3.5:\\n\\n智谱清言\\n\\n以上答题选手全部可以免费使用。\\n\\n谁的逻辑更严谨显而易见智谱遥遥领先。\\n\\n所以通常遇到AI统计和数据分析方面的需求我一般优先使用的是智谱而不是Kimi。\\n\\n但这也不意味着智谱最强涉及到文案和创意方面就没有那么好用。\\n\\n智谱给我的印象就是一个理科学霸做什么事都按部就班井井有条。\\n\\n但很多文字方面的东西我其实并不希望得到一个因为所以、1234的答案。我希望我能直接给出一个模糊的方向收获一堆延展的可能而不是严格按照我给的关键词以一套缜密的逻辑去查询所以我通常不实用智谱清言处理文字创意方面的工作。\\n\\n同时值得一提的一个很有趣的点上面这个化学题没有人答对。\\n\\n文心一言的回答里\\n\\n碳在氧气中燃烧发出白光生成能使澄清石灰水变浑浊的气体。\\n\\n这个是对的。\\n\\n碳在氧气中燃烧会发出白光但不产生火焰。\\n\\n而且氢气燃烧产生水是液态还是气态这个俺也拿不准了总之其实没人全答对。\\n\\n从这点也可以看出大厂出身的文心一言训练所用的语料更为先进。\\n\\n再回到我前面这篇回答看第二个案例\\n\\n《侵权责任法》在《民法典》施行后已经废止。 [...] 总有一些人评价大模型的时候动不动就「3.5水平」那么「3.5水平」到底是一个什么样的标准,通过什么去量化?这个量化和实际落地之间的差异有多大?\\n\\n我相信其中是有一些专家是清楚的。但这些专家里面能把这个「3.5水平」的概念给一个纯小白讲明白的也寥寥无几。更别提大部分张嘴「3.5水平」的人其实自己也说不清楚3.5是个啥水平。\\n\\n我还是那个观点\\n\\n现在大模型的发展阶段远远没到赢家通吃那个局面。OpenAI也不能。\\n\\n现在免费使用的AI工具也这么多与其在网上评价过来评价过去不如自己去多用用找到适合自己应用场景的那一款。\\n\\n安歌Mia\\n\\n\\n\\nAI赋能自媒体 | AI超级个体\\n\\n很多人说Kimi是过度炒作但对我来说确实是国产AI之光。\\n\\n作为一个自媒体人我使用Kimi的频率即将超过office了~\\n\\n分享一下Kimi的功能以及我是怎么使用Kimi的。\\n\\n从首页来看Kimi的功能最核心就4项:\\n\\n1、自定义常用语场景功能提示词\\n\\n2、知识及信息检索\\n\\n3、阅读互联网信息并整理要点\\n\\n4、阅读本地文件并提炼要点\\n\\n接下来我们逐个看一下各项功能的具体能力咋样\", \"score\": 0.4581311, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"360doc 月之暗面kimi底层推理系统方案揭秘\", \"url\": \"http://www.360doc.com/content/24/0705/08/46368139_1128000039.shtml\", \"content\": \"相对计算密集这一部分也承担着抬高整体资源利用率的任务。Prefill 处理完之后对应的 KVCache 会被送到 Decode Pool 进行 autoregression 式的流式输出。虽然我们希望尽可能攒大的 batch 以提升 MFU但这一部分主要需要对 Time Between Tokens (TBT) 负责。 Mooncake 架构 这里我们使用 TBT 而非另外一些工作中常用的 Time Per Output Token (TPOT) 的原因在于虽然其实本来这两者应该等价,但实际计算 TPOT 的时候经常会被简单地等价成计算 average TPOT。然后就直接用了吞吐的倒数或者说总生成时间除以总生成 token 数。TBT 的定义则更加明确的指定为两个 token 生成间的延迟,因此基于 TBT 上限设计 Service Level Objective (SLO) 能更好的反映流式交互时的用户体验。直观的理解的话大家可以想象如果 GPT-4o 的语音回复是说一句停顿一段时间再说一句的说话方式的话,即便 average TPOT 能小一些体验还是不够好。 在 [...] SLO。此外对KVCache服务器的高需求可能会导致网络拥塞延长等待时间。因此Conductor还负责预测KVCache块的未来使用情况并相应地执行调度操作例如交换和复制。最热门的块应该复制到多个节点以避免获取拥塞而最冷的块应该被交换出去以减少保留成本。预填充调度还受到预填充节点上DRAM空间可用性的限制特别是当大量内存被保留用于全局KVCache池时。 相比之下解码阶段有不同的优化目标和约束条件。目标是将尽可能多的token聚合到一个解码批次中以提高MFU。然而这一目标不仅受到TBT SLO的限制还受到可以包含在VRAM中的聚合KVCache总大小的限制。 [...] “泼天的流量”怎么接,分离架构下基于预测的调度策略 》 传送门: 作者Disclaimer和论文不同本文夹带过量私货个人观点不代表本人单位更不代表 Moonshot纯技术讨论。 TL;DR 正如 @许欣然 所说本文公开的目的之一就是推动硬件厂商和云厂商向前篇提到的分离式乃至未来异构分离的方向演化。作为我个人已知范围内承载了最大规模在线流量的分离式推理系统Mooncake 也积攒了一些独特的实践经验。下篇这里主要是想要讨论其中非常关键的一项Kimi 在承接急速增长的需求时面向过载Overload-oriented场景的调度策略。 Kimi 也会累 和一般按照峰值容量规划调度主要解决如何尽可能利用闲置资源的传统工作不同Kimi 自从破圈之后面临的是完全不同的,如何在不断扩容还天天过载的情况下尽可能保障用户体验的问题。虽然是一个非常凡尔赛的甜蜜烦恼,同时 infra 也已经在最大程度避免,但在高峰期不可避免地还是需要偶尔向大家喊累。 这里主要是我们发现由于当前的负载情况已经无法按照 SLO 提供响应,所以与其提供一个完全无保障的长时间排队(违反 TTFT\", \"score\": 0.45057756, \"published_date\": \"\"}], \"total_results\": 5}",
"timestamp": "2025-11-08T11:37:53.335392",
"tool_call_id": "web_search:6",
"name": "web_search"
},
{
"role": "assistant",
"content": "让我搜索更多关于Kimi API流式输出chunk大小问题的技术讨论",
"timestamp": "2025-11-08T11:37:57.551413"
},
{
"role": "assistant",
"content": "",
"timestamp": "2025-11-08T11:37:57.561878",
"tool_calls": [
{
"id": "web_search:7",
"index": 0,
"type": "function",
"function": {
"name": "web_search",
"arguments": "{\"max_results\": 5, \"query\": \"Kimi API streaming chunk size issue github reddit \\\"half line\\\" problem\"}"
}
}
]
},
{
"role": "tool",
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: Kimi API streaming chunk size issue github reddit \\\"half line\\\" problem\\n📅 搜索时间: 2025-11-08T11:38:01.224618\\n🎯 过滤条件: Topic: general\\n\\n📝 AI摘要:\\nKimi API streaming issues often result in incomplete \\\"half line\\\" chunks due to network interruptions. To resolve, save each chunk and calculate total tokens post-request. Implement robust error handling for API calls.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Use the Streaming Feature of the Kimi API - Moonshot AI Platform\\n 🔗 https://platform.moonshot.ai/docs/guide/utilize-the-streaming-output-feature-of-kimi-api\\n 📄 data: {\\\"id\\\":\\\"cmpl-1305b94c570f447fbde3180560736287\\\",\\\"object\\\":\\\"chat.completion.chunk\\\",\\\"created\\\":1698999575,\\\"model\\\":\\\"kimi-k2-0905-preview\\\",\\\"choices\\\":[{\\\"index\\\":0,\\\"delta\\\":{\\\"content\\\":\\\".\\\"},\\\"finish_reason\\\":n...\\n\\n2. Building Apps with Kimi AI API: A Complete Guide for Developers\\n 🔗 https://kimi-ai.chat/guide/building-apps-with-kimi-ai-api/\\n 📄 To manage this in your app, consider calling the API asynchronously or in background jobs. If youre in a user-facing context (like a chatbot UI), use loading indicators (spinners) and perhaps partial...\\n\\n3. [Bug] Kimi-K2 model outputs incomplete content during the multi ...\\n 🔗 https://github.com/sgl-project/sglang/issues/8613\\n 📄 }\\n],\\n\\\"max\\\\\\\\_tokens\\\": 1024,\\n\\\"temperature\\\": 1.0,\\n\\\"stream\\\": false,\\n\\\"stream\\\\\\\\_options\\\": {\\n\\\"include\\\\\\\\_usage\\\": true\\n},\\n\\\"tools\\\": [\\n{\\n\\\"type\\\": \\\"function\\\",\\n\\\"function\\\": {\\n\\\"name\\\": \\\"Task\\\", [...] },\\n{\\n\\\"role\\\": \\\"user...\\n\\n4. Kimi K2 is the large language model series developed by Moonshot ...\\n 🔗 https://github.com/MoonshotAI/Kimi-K2\\n 📄 finish_reason if finish_reason == \\\"tool_calls\\\" messages append choice message for tool_call in choice message tool_calls tool_call_name = tool_call function name tool_call_arguments = json loads tool_...\\n\\n5. moonshotai/Kimi-Audio-7B-Instruct - Hugging Face\\n 🔗 https://huggingface.co/moonshotai/Kimi-Audio-7B-Instruct\\n 📄 Novel Architecture: Employs a hybrid audio input (continuous acoustic + discrete semantic tokens) and an LLM core with parallel heads for text and audio token generation.\\n Efficient Inference: Featu...\", \"filters\": {\"topic\": \"general\"}, \"query\": \"Kimi API streaming chunk size issue github reddit \\\"half line\\\" problem\", \"results\": [{\"index\": 1, \"title\": \"Use the Streaming Feature of the Kimi API - Moonshot AI Platform\", \"url\": \"https://platform.moonshot.ai/docs/guide/utilize-the-streaming-output-feature-of-kimi-api\", \"content\": \"data: {\\\"id\\\":\\\"cmpl-1305b94c570f447fbde3180560736287\\\",\\\"object\\\":\\\"chat.completion.chunk\\\",\\\"created\\\":1698999575,\\\"model\\\":\\\"kimi-k2-0905-preview\\\",\\\"choices\\\":[{\\\"index\\\":0,\\\"delta\\\":{\\\"content\\\":\\\".\\\"},\\\"finish_reason\\\":null}]}\\n \\ndata: {\\\"id\\\":\\\"cmpl-1305b94c570f447fbde3180560736287\\\",\\\"object\\\":\\\"chat.completion.chunk\\\",\\\"created\\\":1698999575,\\\"model\\\":\\\"kimi-k2-0905-preview\\\",\\\"choices\\\":[{\\\"index\\\":0,\\\"delta\\\":{},\\\"finish_reason\\\":\\\"stop\\\",\\\"usage\\\":{\\\"prompt_tokens\\\":19,\\\"completion_tokens\\\":13,\\\"total_tokens\\\":32}}]}\\n \\ndata: [DONE]\\n``` [...] if len(line) == 0:\\n\\t\\tchunk = json.loads(data)\\n \\n\\t\\t# The processing logic here can be replaced with your business logic, printing is just to demonstrate the process\\n\\t\\tchoice = chunk[\\\"choices\\\"]\\n\\t\\tusage = choice.get(\\\"usage\\\")\\n\\t\\tif usage:\\n\\t\\t\\tprint(\\\"total_tokens:\\\", usage[\\\"total_tokens\\\"])\\n\\t\\tdelta = choice[\\\"delta\\\"]\\n\\t\\trole = delta.get(\\\"role\\\")\\n\\t\\tif role:\\n\\t\\t\\tprint(\\\"role:\\\", role)\\n\\t\\tcontent = delta.get(\\\"content\\\")\\n\\t\\tif content:\\n\\t\\t\\tprint(content, end=\\\"\\\")\\n \\n\\t\\tdata = \\\"\\\" # Reset data [...] However, in practice, streaming output can be interrupted by uncontrollable factors such as network disconnections or client-side errors. In such cases, the last data chunk may not have been fully transmitted, making it impossible to know the total number of tokens consumed by the request. To avoid this issue, we recommend saving the content of each data chunk as it is received and then using the token calculation interface to compute the total consumption after the request ends, regardless of\", \"score\": 0.57437146, \"published_date\": \"\"}, {\"index\": 2, \"title\": \"Building Apps with Kimi AI API: A Complete Guide for Developers\", \"url\": \"https://kimi-ai.chat/guide/building-apps-with-kimi-ai-api/\", \"content\": \"To manage this in your app, consider calling the API asynchronously or in background jobs. If youre in a user-facing context (like a chatbot UI), use loading indicators (spinners) and perhaps partial output streaming (discussed below) to keep the experience responsive.\\n\\nAlso, optimize wherever possible: dont request more tokens than necessary (`max_tokens`) and prefer concise prompts shorter prompts yield faster completions. [...] `stream`: set to false (default) here, meaning we want the full response in one go. If true, the API would stream the answer. [...] Error Handling: Always implement robust error handling around API calls. Common errors include 401 Unauthorized (if your key is wrong or expired), 429 Too Many Requests (if you exceed rate limits), or 400 Bad Request (if your input JSON is malformed or too large).\", \"score\": 0.4395795, \"published_date\": \"\"}, {\"index\": 3, \"title\": \"[Bug] Kimi-K2 model outputs incomplete content during the multi ...\", \"url\": \"https://github.com/sgl-project/sglang/issues/8613\", \"content\": \"}\\n],\\n\\\"max\\\\\\\\_tokens\\\": 1024,\\n\\\"temperature\\\": 1.0,\\n\\\"stream\\\": false,\\n\\\"stream\\\\\\\\_options\\\": {\\n\\\"include\\\\\\\\_usage\\\": true\\n},\\n\\\"tools\\\": [\\n{\\n\\\"type\\\": \\\"function\\\",\\n\\\"function\\\": {\\n\\\"name\\\": \\\"Task\\\", [...] },\\n{\\n\\\"role\\\": \\\"user\\\",\\n\\\"content\\\": [\\n{\\n\\\"type\\\": \\\"text\\\", [...] \\\"parameters\\\": {\\n\\\"type\\\": \\\"object\\\",\\n\\\"properties\\\": {\\n\\\"command\\\": {\\n\\\"type\\\": \\\"string\\\",\\n\\\"description\\\": \\\"The command to execute\\\"\\n},\\n\\\"timeout\\\": {\\n\\\"type\\\": \\\"number\\\",\\n\\\"description\\\": \\\"Optional timeout in milliseconds (max 600000)\\\"\\n},\\n\\\"description\\\": {\\n\\\"type\\\": \\\"string\\\",\", \"score\": 0.40584955, \"published_date\": \"\"}, {\"index\": 4, \"title\": \"Kimi K2 is the large language model series developed by Moonshot ...\", \"url\": \"https://github.com/MoonshotAI/Kimi-K2\", \"content\": \"finish_reason if finish_reason == \\\"tool_calls\\\" messages append choice message for tool_call in choice message tool_calls tool_call_name = tool_call function name tool_call_arguments = json loads tool_call function arguments tool_function = tool_map tool_call_name tool_result = tool_function tool_call_arguments print\\\"tool_result:\\\" tool_result messages append \\\"role\\\" \\\"tool\\\" \\\"tool_call_id\\\" tool_call id \\\"name\\\" tool_call_name \\\"content\\\" json dumps tool_result print\\\"-\\\" 100 print choice message content [...] ## Contributors 10\\n\\nYou cant perform that action at this time. [...] Notifications You must be signed in to change notification settings\\n Fork 553\\n Star 8.4k\\n\\nKimi K2 is the large language model series developed by Moonshot AI team\\n\\n### License\\n\\nView license\\n\\n8.4k stars 553 forks Branches Tags Activity\\n\\nStar\\n\\nNotifications You must be signed in to change notification settings\\n\\n# MoonshotAI/Kimi-K2\\n\\nBranchesTags\\n\\nOpen more actions menu\\n\\n## Folders and files\", \"score\": 0.24513964, \"published_date\": \"\"}, {\"index\": 5, \"title\": \"moonshotai/Kimi-Audio-7B-Instruct - Hugging Face\", \"url\": \"https://huggingface.co/moonshotai/Kimi-Audio-7B-Instruct\", \"content\": \"Novel Architecture: Employs a hybrid audio input (continuous acoustic + discrete semantic tokens) and an LLM core with parallel heads for text and audio token generation.\\n Efficient Inference: Features a chunk-wise streaming detokenizer based on flow matching for low-latency audio generation. [...] Inference providers allow you to run inference using different serverless providers. [...] # --- 2. Define Sampling Parameters ---\\nsampling_params = {\\n \\\"audio_temperature\\\": 0.8,\\n \\\"audio_top_k\\\": 10,\\n \\\"text_temperature\\\": 0.0,\\n \\\"text_top_k\\\": 5,\\n \\\"audio_repetition_penalty\\\": 1.0,\\n \\\"audio_repetition_window_size\\\": 64,\\n \\\"text_repetition_penalty\\\": 1.0,\\n \\\"text_repetition_window_size\\\": 16,\\n}\", \"score\": 0.17536886, \"published_date\": \"\"}], \"total_results\": 5}",
"timestamp": "2025-11-08T11:38:01.229819",
"tool_call_id": "web_search:7",
"name": "web_search"
},
{
"role": "assistant",
"content": "基于我的搜索结果我来为您总结关于月之暗面Kimi模型API流式输出问题的社区反馈情况\n\n## 搜索结果总结\n\n### 关于Kimi官方API流式输出问题的社区反馈\n\n**1. 官方文档中的说明**\n- 月之暗面官方文档确实提到了流式输出的技术细节但没有明确提及chunk大小控制的问题\n- 官方推荐使用`stream=True`来避免连接超时等问题\n\n**2. 社区讨论情况**\n- 在GitHub、知乎、CSDN等平台上**我没有找到大量用户明确反馈\"半行半行出现\"这个具体问题**\n- 但有用户讨论Kimi API与其他模型如OpenAI、Claude在流式输出体验上的差异\n\n**3. 技术实现差异**\n- 从搜索到的代码示例来看Kimi API的流式输出实现遵循标准的SSEServer-Sent Events格式\n- 不同平台官方API vs 火山引擎可能存在chunk处理策略的差异\n\n### 可能的原因分析\n\n**1. 服务端chunk策略不同**\n- 官方API可能采用了较大的chunk打包策略导致显示效果像是\"半行\"输出\n- 火山引擎可能优化了chunk分发策略使其更接近token-by-token的效果\n\n**2. 网络传输优化**\n- 不同的服务提供商可能在网络传输层有不同的优化策略\n- 火山引擎作为云服务商,可能在流式传输优化方面做得更好\n\n**3. 客户端处理差异**\n- 不同的SDK或客户端实现可能对chunk的处理方式不同\n- 第三方平台可能做了额外的优化来改善用户体验\n\n### 建议\n\n**1. 社区反馈**\n- 这个问题似乎还没有被广泛讨论建议您可以在相关技术社区如知乎、CSDN、GitHub分享您的发现\n- 也可以直接向月之暗面官方反馈这个问题\n\n**2. 技术解决方案**\n- 如果您在使用官方API时遇到显示效果问题可以考虑\n - 在前端做chunk缓存和平滑显示处理\n - 使用第三方平台如火山引擎的API服务\n - 调整客户端的流式输出处理逻辑\n\n**3. 进一步调查**\n- 您可以尝试用网络抓包工具对比官方API和火山引擎API的chunk大小和频率\n- 这可以帮助确认是否确实是服务端chunk策略的差异\n\n总的来说您的观察很敏锐这个问题确实存在但在社区中还没有引起广泛讨论。这可能是因为Kimi API的用户群体相对较新或者很多开发者接受了这个现状。",
"timestamp": "2025-11-08T11:38:14.439075"
}
],
"todo_list": null,
"metadata": {
"project_path": "/opt/agent/agents/users/jojo/project",
"project_relative_path": "users/jojo/project",
"thinking_mode": false,
"total_messages": 28,
"total_tools": 16,
"status": "active"
},
"token_statistics": {
"total_input_tokens": 206345,
"total_output_tokens": 2184,
"updated_at": "2025-11-08T23:59:33.881966"
}
}