236 lines
44 KiB
JSON
236 lines
44 KiB
JSON
{
|
||
"id": "conv_20251008_184224_595",
|
||
"title": "搜索deepseekv3.1,qwen2.5-max,kimi-k2,gemini2.5pro的模型...",
|
||
"created_at": "2025-10-08T18:42:24.595805",
|
||
"updated_at": "2025-10-08T19:16:42.059178",
|
||
"messages": [
|
||
{
|
||
"role": "user",
|
||
"content": "搜索deepseekv3.1,qwen2.5-max,kimi-k2,gemini2.5pro的模型相关信息,保证数据的准确性,主要了解其性能,做成一个精美的,设计高级的,带有可互动和方便对比的各种图表,动画和互动效果精致高级的html页面",
|
||
"timestamp": "2025-10-08T18:42:38.064685"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "我来为您搜索这些AI模型的相关信息,然后创建一个精美的对比页面。",
|
||
"timestamp": "2025-10-08T18:42:42.049743"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-10-08T18:42:42.054914",
|
||
"tool_calls": [
|
||
{
|
||
"id": "web_search:0",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "web_search",
|
||
"arguments": "{\"query\": \"deepseek v3.1 模型性能参数 发布日期 架构特点\", \"max_results\": 5}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: deepseek v3.1 模型性能参数 发布日期 架构特点\\n📅 搜索时间: 2025-10-08T18:42:46.740195\\n\\n📝 AI摘要:\\nDeepSeek V3.1 was released on August 21, 2025, with a mixed-expert architecture and 685 billion parameters. It supports both thinking and non-thinking modes for efficient responses. The model is open-source and has been deployed for various applications.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. DeepSeek-V3.1 发布,官方划重点:Agent - 知乎专栏\\n 🔗 https://zhuanlan.zhihu.com/p/1941903336199689637\\n 📄 首页\\n 知乎直答\\n 知乎知学堂\\n 等你来答\\n\\nDeepSeek-V3.1 发布,官方划重点:Agent、Agent、Agent!\\n\\n切换模式\\n\\n# DeepSeek-V3.1 发布,官方划重点:Agent、Agent、Agent!\\n\\nFounder Park\\n\\n\\n\\n已认证机构号\\n\\nDEEPSEEK\\n\\nV3.1 正式发布\\n\\n2025年08月21日 \\n北京\\n\\n混合推理架构 \\n思考/非思考模式合一...\\n\\n2. DeepSeek V3.1 vs Claude 4:2025年AI模型终极对决 - Cursor IDE\\n 🔗 https://www.cursor-ide.com/blog/deepseek-v3-1-vs-claude-4\\n 📄 DeepSeek V3.1采用685B参数的Mixture-of-Experts架构,每个token仅激活37B参数,这种设计在保证性能的同时大幅降低了计算成本。相比之下,Claude 4虽然在纯推理任务上仍保持60分对47分的领先优势,但在实际编程场景中的差距已经微乎其微。根据2025年8月最新的Aider基准测试,DeepSeek V3.1的一次通过率达到41.3%,二次通过率提升至71.6%...\\n\\n3. DeepSeek-V3.1 正式发布,官方详解迈向AI Agent 时代的第一步\\n 🔗 https://www.ithome.com/0/876/985.htm\\n 📄 文章价值 4.8分143人打分\\n\\n有价值 \\n\\n135\\n\\n无价值 \\n\\n8\\n\\n下载IT之家APP,签到赚金币兑豪礼\\n\\n## 相关文章\\n\\n关键词:DeepSeek\\n\\n DeepSeek 开源新模型 V3.1:约 685B 参数,上下文长度拓展至 128K\\n DeepSeek 通知线上模型版本升级至 V3.1,上下文长度拓展至 128k\\n (更新:对话功能恢复正常)DeepSeek 出现服务问题,登录...\\n\\n4. DeepSeek V3.1深度解析:685B参数混合推理模型的成本革命\\n 🔗 https://www.cursor-ide.com/blog/deepseek-v3-1\\n 📄 # DeepSeek V3.1深度解析:685B参数混合推理模型的成本革命\\n\\n全面解析DeepSeek V3.1的技术突破、性能基准、98%成本优势和企业部署方案,助力AI应用降本增效\\n\\n官方正规渠道已服务 2,847 位用户\\n\\n限时优惠 23:59:59\\n\\n### ChatGPT Plus 官方代充 · 5分钟极速开通\\n\\n5分钟自动开通\\n\\n24小时服务\\n\\n官方价 ¥180/月\\n\\n¥158/月\\n\\n...\\n\\n5. DeepSeek-V3 - 维基百科,自由的百科全书\\n 🔗 https://zh.wikipedia.org/zh-hans/DeepSeek-V3\\n 📄 DeepSeek-V3是深度求索于2024年12月16日发布的人工智能大型语言模型,专门适用于数学、编码和中文等任务,性能对标GPT-4o等竞争产品[\\\\[1\\\\]](\\n\\n开发\\n--\\n\\n\\\\[编辑\\\\]\\n\\nDeepSeek-V3是深度求索于2024年12月26日发布的人工智能大型语言模型,这款采用MoE(混合专家)架构的模型不仅在性能上媲美顶级闭源模型,其低成本高效率的特点更是引发业界关注。相较于前代产品...\"}",
|
||
"timestamp": "2025-10-08T18:42:46.746494",
|
||
"tool_call_id": "web_search:0",
|
||
"name": "web_search"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-10-08T18:42:49.679570",
|
||
"tool_calls": [
|
||
{
|
||
"id": "web_search:1",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "web_search",
|
||
"arguments": "{\"max_results\": 5, \"query\": \"qwen 2.5 max 模型性能参数 发布日期 架构特点 阿里巴巴\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: qwen 2.5 max 模型性能参数 发布日期 架构特点 阿里巴巴\\n📅 搜索时间: 2025-10-08T18:42:56.473113\\n\\n📝 AI摘要:\\nAlibaba's Qwen 2.5-Max is a large language model with over 20 trillion tokens, using MoE architecture, and claimed to outperform other leading models. It is available via Alibaba Cloud's API for developers.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Alibaba发布Qwen 2.5-Max AI模型,称性能超越DeepSeek-V3\\n 🔗 https://www.thepaper.cn/newsDetail_forward_30063462\\n 📄 阿里云在博客文章中表示:\\\"我们开发的 Qwen 2.5-Max 是一个大规模混合专家 LLM 模型,该模型已经在超过 20 万亿个 token 上进行了预训练,并通过精选的监督微调和基于人类反馈的强化学习方法进行了后续训练。\\\"\\n\\n混合专家模型 (MoE) 是一种大语言模型架构,它使用多个专门模型协同工作,根据特定的专业领域更高效地处理复杂任务。这就像一个 AI 模型团队,每个模型都在特定知识子类别...\\n\\n2. 炸裂!大年初一,阿里通义发布比DeepSeek-V3还猛的Qwen2.5-Max ...\\n 🔗 https://blog.csdn.net/weixin_40774379/article/details/145402981\\n 📄 `Qwen2.5-Max`模型是阿里通义团队对Mixture of Experts(MoE)模型架构的最新研究成果。MoE混合专家架构通过激活部分专家(Experts),使模型在保持大参数量的同时,减少实际计算开销,比稠密模型(Dense Model)更具性价比。`DeepSeek-V3`也是同样的技术路线。此外,据称`Qwen2.5-Max`该模型的预训练数据超过20万亿tokens,规模远超之...\\n\\n3. “硬刚”DeepSeek!阿里云Qwen2.5-Max升级发布,称新模型所有测试 ...\\n 🔗 https://finance.sina.com.cn/roll/2025-01-31/doc-inehvuih1211492.shtml\\n 📄 # “硬刚”DeepSeek!阿里云Qwen2.5-Max升级发布,称新模型所有测试全面超越【附中国大模型行业市场规模】\\n\\n“硬刚”DeepSeek!阿里云Qwen2.5-Max升级发布,称新模型所有测试全面超越【附中国大模型行业市场规模】\\n\\n2025年01月31日 10:38\\n前瞻网\\n\\n新浪财经APP举报\\n缩小字体\\n放大字体\\n收藏\\n微博\\n微信\\n分享\\n\\n腾讯QQ\\nQQ空间\\n\\n图源:摄图网\\n\\n1月3...\\n\\n4. 阿里千问系列最强大模型-Qwen2.5-Max震撼发布!在线测评+API调用 ...\\n 🔗 https://www.aivi.fyi/llms/introduce-Qwen2.5-Max\\n 📄 ### AI超元域\\n\\nAI超元域up主\\n\\n 新加坡\\n X\\n GitHub\\n YouTube\\n 哔哩哔哩\\n 微信\\n\\n# 🚀阿里千问系列最强大模型-Qwen2.5-Max震撼发布!在线测评+API调用!Cline编程+AutoGen智能体!轻松实现任务计划AI Agents!官方基准测试得分超越DeepSeek v3!\\n\\n4 minute read\\n\\n通义千问Qwen 2.5-Max是阿里云研发的一款...\\n\\n5. 通义千问大语言模型介绍 - 阿里云文档\\n 🔗 https://help.aliyun.com/zh/model-studio/what-is-qwen-llm\\n 📄 | 模型名称 | 上下文长度 | 最大输入 | 最大输出 | 输入成本 | 输出成本 | 免费额度 (注) |\\n| (Token数) | | | (每千Token) | |\\n| qwq-32b-preview | 32,768 | 30,720 | 16,384 | 0.002元 Batch调用半价 | 0.006元 Batch调用半价 | 100万Token 有效期:百炼开通后90天内 ...\"}",
|
||
"timestamp": "2025-10-08T18:42:56.484997",
|
||
"tool_call_id": "web_search:1",
|
||
"name": "web_search"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-10-08T18:42:59.526645",
|
||
"tool_calls": [
|
||
{
|
||
"id": "web_search:2",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "web_search",
|
||
"arguments": "{\"max_results\": 5, \"query\": \"kimi k2 月之暗面 模型性能参数 发布日期 架构特点\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: kimi k2 月之暗面 模型性能参数 发布日期 架构特点\\n📅 搜索时间: 2025-10-08T18:43:04.615143\\n\\n📝 AI摘要:\\nKimi K2 is a 1 trillion parameter model with 320 billion parameters per inference, released by Moonshot AI on July 11, 2025, using a Mixture of Experts architecture. It supports text output but not input. Pricing is 4 yuan per million input tokens and 16 yuan per million output tokens.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Kimi K2 模型详解:参数、评测及开源信息- 数据学习(DataLearner)\\n 🔗 https://www.datalearner.com/ai-models/pretrained-models/kimi-k2-0711-base-preview\\n 📄 ##### 视频\\n\\n输入不支持\\n\\n##### 音频\\n\\n输入不支持\\n\\n##### Embedding(向量)\\n\\n输入不支持\\n\\n## 输出支持的模态\\n\\n##### 文本\\n\\n输出支持\\n\\n##### 图片\\n\\n输出不支持\\n\\n##### 视频\\n\\n输出不支持\\n\\n##### 音频\\n\\n输出不支持\\n\\n##### Embedding(向量)\\n\\n输出不支持\\n\\n## Kimi K2模型在各大评测榜单的评分\\n\\n89.5\\n\\n8...\\n\\n2. 月之暗面发布万亿参数模型Kimi K2 - 新浪财经\\n 🔗 https://finance.sina.com.cn/jjxw/2025-07-12/doc-inffffqk6381651.shtml\\n 📄 # 月之暗面发布万亿参数模型Kimi K2\\n\\n月之暗面发布万亿参数模型Kimi K2\\n\\n2025年07月12日 17:20\\n界面新闻\\n\\n新浪财经APP举报\\n缩小字体\\n放大字体\\n收藏\\n微博\\n微信\\n分享\\n\\n腾讯QQ\\nQQ空间\\n\\n> 界面新闻记者 | 伍洋宇\\n>\\n> 界面新闻编辑 | 文姝琪\\n\\n7月11日晚,月之暗面突然发布重要更新,正式推出Kimi K2模型并同步开源。\\n\\nK2采用MoE架构,总参数达...\\n\\n3. 一文读懂万亿参数智能体的所有秘密_kimi k2 技术报告 - CSDN博客\\n 🔗 https://blog.csdn.net/sinat_37574187/article/details/149569588\\n 📄 摘要: Kimi-K2是由月之暗面(Moonshot AI)开源的大型语言模型,采用混合专家架构(MoE),总参数达1T,推理激活参数32B。其创新点在于模糊了思维链过程,直接混合思考与输出,提升推理效率。模型支持128k上下文,开源了预训练基础版和指令微调版。测试表明,Kimi-K2在代码生成(如HTML坦克大战游戏)和逻辑推理任务中表现优异,虽无显式思维链,但能快速输出准确结果。与DeepSe...\\n\\n4. Kimi K2:月之暗面最新发布的万亿参数智能体模型 - 知乎专栏\\n 🔗 https://zhuanlan.zhihu.com/p/1927323824300496714\\n 📄 官方发布时间:2025年7月11日,月之暗面通过官方Twitter账号@kimi_moonshot发布公告:\\\" Hello, Kimi K2! Open-Source Agentic Model!\\\"\\n\\n这一发布具有重要战略意义。月之暗面在2024年8月至2025年6月期间,在中国AI市场的排名从第3位跌至第7位,面临来自DeepSeek等竞争对手的激烈竞争。K2的发布被视为该公司重新夺回市场领导地...\\n\\n5. 深夜突袭!万亿参数MoE模型Kimi K2上线即开源,月之暗面能否重归 ...\\n 🔗 https://finance.sina.com.cn/roll/2025-07-13/doc-inffikpm7017615.shtml\\n 📄 新浪首页\\n 新闻\\n 体育\\n 财经\\n 娱乐\\n 科技\\n 博客\\n 图片\\n 专栏\\n 更多\\n\\n 汽车 教育 时尚 女性 星座 健康\\n 房产历史视频收藏育儿读书\\n 佛学游戏旅游邮箱导航\\n\\n 新浪微博\\n 新浪新闻\\n 新浪财经\\n 新浪体育\\n 新浪众测\\n 新浪博客\\n 新浪视频\\n 新浪游戏\\n 天气通\\n\\n经济新闻滚动 > 正文\\n\\n# 深夜突袭!万亿参数MoE模型Kimi K2上线即开源,月之暗面能否重归C位?\\n\\n深夜突...\"}",
|
||
"timestamp": "2025-10-08T18:43:04.624748",
|
||
"tool_call_id": "web_search:2",
|
||
"name": "web_search"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-10-08T18:43:07.067067",
|
||
"tool_calls": [
|
||
{
|
||
"id": "web_search:3",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "web_search",
|
||
"arguments": "{\"max_results\": 5, \"query\": \"gemini 2.5 pro google 模型性能参数 发布日期 架构特点\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: gemini 2.5 pro google 模型性能参数 发布日期 架构特点\\n📅 搜索时间: 2025-10-08T18:43:12.052945\\n\\n📝 AI摘要:\\nGemini 2.5 Pro was released by Google in March 2025. It features a multi-stage reasoning architecture and supports multi-modal inputs. It has a token limit of 1,000,000.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Gemini 2.5 Pro全面解析:思考能力、推理突破与编程提升 - Cursor IDE\\n 🔗 https://www.cursor-ide.com/blog/gemini-25-pro-guide\\n 📄 Gemini 2.5 Pro于5月28日正式发布,采用多阶段推理架构,被Google宣称为\\\"目前世界上最强大的AI模型之一\\\"。无论是在基准测试还是实际应用中,它都展现出优于其他主流大模型的性能。\\n\\n## 核心创新:先思考后回答\\n\\n### 多阶段推理架构\\n\\nGemini 2.5 Pro最显著的特点是其\\\"多阶段推理架构\\\"(Multi-stage Reasoning Architecture),这使得模...\\n\\n2. Gemini 2.5 Pro的各项对比数据原创 - CSDN博客\\n 🔗 https://blog.csdn.net/zwh1zwh/article/details/146537769\\n 📄 最新推荐文章于 2025-08-19 08:30:00 发布\\nImage 7\\n悟能不能悟Image 8于 2025-03-26 18:37:01 发布\\nImage 9阅读量2.9kImage 10Image 11收藏 19\\nImage 12Image 13点赞数 20\\nCC 4.0 BY-SA版权\\n文章标签:ai\\n版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出...\\n\\n3. Google 再次領先:Gemini 2.5 Pro 贏麻了!\\n 🔗 https://tenten.co/learning/google-25-pro-gemini/\\n 📄 | 特性 | 描述 |\\n --- |\\n| 模型名稱 | Gemini 2.5 Pro Experimental |\\n| 知識截止日期 | 2025 年 1 月 |\\n| 延遲 | 在 AI Studio 中顯示 |\\n| 速率限制 | 存在限制,但實際使用中較少遇到 |\\n| Token 數量 | 高達 1,000,000 tokens |\\n| 可調參數 | Temperature (溫度) |\\n| 工...\\n\\n4. 全面解读Gemini 2.5技术细节,并纵观Gemini 1.0到2.5 的演进路线\\n 🔗 https://developer.volcengine.com/articles/7529485165995753498\\n 📄 定位与能力 :它是当时发布之际最强大、最智能的思考模型 ,在领先的编码和推理基准测试中取得了最先进 (SoTA) 的性能。它在生成交互式Web应用程序、代码库级别理解以及多模态编码能力方面表现出色。即使在目前,Gemini 2.5 Pro依然是最顶尖的模型之一。\\n 多模态 :擅长多模态理解,能够处理长达3小时 的视频内容。其长上下文、多模态和推理能力的独特结合可以解锁新的智能体工作流。\\n 思考能力...\\n\\n5. Gemini 2.5 Pro | Generative AI on Vertex AI - Google Cloud\\n 🔗 https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro?hl=zh-cn\\n 📄 | | |\\n --- |\\n| 模型 ID | `gemini-2.5-pro` |\\n| 支持的输入和输出 | 输入: 文本、 代码、 图片、 音频、 视频 输出: |\\n| token 数量上限 | 输入词元数上限:1,048,576 输出词元数上限:65,535(默认值) |\\n| 功能 | 支持 + 使用 Google 搜索建立依据 + 代码执行 + 调优 + 系统指令 + 结构化...\"}",
|
||
"timestamp": "2025-10-08T18:43:12.061363",
|
||
"tool_call_id": "web_search:3",
|
||
"name": "web_search"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "现在让我搜索更多关于这些模型在具体基准测试中的表现数据:",
|
||
"timestamp": "2025-10-08T18:43:14.863688"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-10-08T18:43:14.870610",
|
||
"tool_calls": [
|
||
{
|
||
"id": "web_search:4",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "web_search",
|
||
"arguments": "{\"max_results\": 5, \"query\": \"\\\"AI model benchmarks\\\" \\\"MMLU\\\" \\\"HumanEval\\\" \\\"HellaSwag\\\" deepseek qwen gemini kimi 2025\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: \\\"AI model benchmarks\\\" \\\"MMLU\\\" \\\"HumanEval\\\" \\\"HellaSwag\\\" deepseek qwen gemini kimi 2025\\n📅 搜索时间: 2025-10-08T18:43:21.796178\\n\\n📝 AI摘要:\\nAI model benchmarks include MMLU, HumanEval, HellaSwag, and DeepSeek. DeepSeek-V3.2-Exp is notable for cost efficiency. HellaSwag tests commonsense reasoning.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. Top 50 AI Model Benchmarks & Evaluation Metrics (2025 Guide)\\n 🔗 https://o-mega.ai/articles/top-50-ai-model-evals-full-list-of-benchmarks-october-2025\\n 📄 extremely challenging. It covers a balanced mix of STEM (math, physics, biology, chemistry) and humanities (history, literature, law, etc.), and about 14% of the questions are _multimodal_ – requiring...\\n\\n2. DeepSeek V3.2-Exp Release: Pricing, API Costs, Context Window ...\\n 🔗 https://llm-stats.com/blog/research/deepseek-v3.2-ex-launch\\n 📄 The release of DeepSeek-V3.2-Exp marks a pivotal moment in the evolution of efficient AI systems. Unveiled on September 29, 2025, the model introduces a groundbreaking sparse-attention mechanism desig...\\n\\n3. Samsung benchmarks real productivity of enterprise AI models\\n 🔗 https://www.artificialintelligence-news.com/news/samsung-benchmarks-real-productivity-enterprise-ai-models/\\n 📄 World of Work\\n\\n# Samsung benchmarks real productivity of enterprise AI models\\n\\nRyan Daws\\n\\nSeptember 25, 2025\\n\\nShare this story:\\n\\nTags:\\n\\n## aiartificial intelligencebenchmarksenterprisemodelsproductivi...\\n\\n4. DeepSeek-R1 Release | DeepSeek API Docs\\n 🔗 https://api-docs.deepseek.com/news/news250120\\n 📄 Image 6\\n\\nImage 7\\n\\nPrevious DeepSeek-V3-0324 ReleaseNext Introducing DeepSeek App\\n\\nWeChat Official Account\\n\\n Image 8: WeChat QRcode\\n\\nCommunity\\n\\n Email\\n Discord\\n Twitter\\n\\nMore\\n\\n GitHub\\n\\nCopyri...\\n\\n5. Your First API Call | DeepSeek API Docs\\n 🔗 https://api-docs.deepseek.com/\\n 📄 WeChat Official Account\\n\\n Image 2: WeChat QRcode\\n\\nCommunity\\n\\n Email\\n Discord\\n Twitter\\n\\nMore\\n\\n GitHub\\n\\nCopyright © 2025 DeepSeek, Inc. [...] News \\n DeepSeek-V3.2-Exp Release 2025/09/29\\n...\"}",
|
||
"timestamp": "2025-10-08T18:43:21.803266",
|
||
"tool_call_id": "web_search:4",
|
||
"name": "web_search"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-10-08T18:43:25.558634",
|
||
"tool_calls": [
|
||
{
|
||
"id": "web_search:5",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "web_search",
|
||
"arguments": "{\"max_results\": 5, \"query\": \"AI模型性能对比 2025年 排行榜 MMLU HumanEval 编程能力 推理能力\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"summary\": \"🔍 搜索查询: AI模型性能对比 2025年 排行榜 MMLU HumanEval 编程能力 推理能力\\n📅 搜索时间: 2025-10-08T18:43:30.133130\\n\\n📝 AI摘要:\\nIn 2025, GPT-4.5 leads in AI model performance, followed closely by Claude 3.7 and Gemini 2.0. Grok 3 excels in programming tasks, outperforming many models. These models show strong reasoning and coding abilities.\\n\\n---\\n\\n📊 搜索结果:\\n\\n1. 李飞飞实验室2025 AI报告出炉:AI推理成本降低至1/280 - 量子位\\n 🔗 https://www.qbitai.com/2025/04/271959.html\\n 📄 # 李飞飞实验室2025 AI报告出炉:AI推理成本降低至1/280,中美AI模型差距更小了\\n\\n一水\\n2025-04-08\\n15:48:33\\n\\n来源:量子位\\n\\n由李飞飞联合领导,斯坦福大学以人为本人工智能研究所(HAI)最新发布了2025 AI Index,用整整456页追踪了2024年全球AI行业的发展趋势,并得出了这样的结论。\\n\\n至今,HAI已发布了8份(含本次)AI年度报告,不过今年的这份却...\\n\\n2. 2025年十大全球AI大模型API评测榜单:DeepSeek、通义千问\\n 🔗 https://www.explinks.com/blog/pr-top-10-global-ai-models-evaluation-rankings-for-2025/\\n 📄 除了上面的对比维度,幂简集成还倾力打造了一份全面的对比表格,深度剖析了国内主流AI大模型的关键性能指标、API产品特性以及价格等核心要素。如果想全面了解各个AI大模型指标数据,点击查阅完整报表,以获取更全面、更深入的洞察!\\n\\n## 二、2025全球AI大模型Top10\\n\\n### 1. GPT-4.5(OpenAI)\\n\\n 核心技术:混合架构(8个子模型协同),支持32768 tokens长上下文,推...\\n\\n3. 2025最新全球AI大模型排名,国内外模型动态洗牌(实时更新 ... - 搜狐\\n 🔗 https://www.sohu.com/a/910143810_114774\\n 📄 | 排名 | 模型名称 | 关键得分/亮点 | 主导机构 |\\n --- --- |\\n| 1 | GPT-4.5 | 总分80.4(理科87.3,文科77.1)|支持32K上下文 | OpenAI |\\n| 2 | Claude3.7Sonnet | 编程领域断层领先|HumanEval得分91.2|10万token长文档解析 | Anthropic |\\n| 3 | Gemini2.0 | 原生多模...\\n\\n4. 国内外知名大模型及应用——模型/应用维度(2025/10/05) - 知乎专栏\\n 🔗 https://zhuanlan.zhihu.com/p/670574382\\n 📄 国内外知名大模型及应用——模型/应用维度(2025/09/25) - 知乎\\n\\nImage 1)\\n\\n token。详见【LLM技术报告】《Gemini 2.5:通过先进推理、多模态、长上下文和下一代智能体能力推动前沿发展》。_目前模型性能综合实力最强,结合搜索业务的Deep Research是行业标杆。_\\n\\n Claude: \\n\\nAnthropic研发的大模型。2025年8月发布了Opus 4....\\n\\n5. 2025主流大语言模型深度对比 - 知乎专栏\\n 🔗 https://zhuanlan.zhihu.com/p/1889837654448787699\\n 📄 综合来看,多轮对话上Claude 3.7以超长记忆和稳健推理见长,Grok 3和Gemini 2.5通过“深度思考”机制在复杂对话中胜出一筹,ChatGPT (GPT-4)依旧是全能型选手且响应速度较快,Qwen 2.5 Max在双语和工具型对话上独具特色。对于企业应用长对话(如客服、顾问),Claude的长上下文是巨大优势;对于需要严谨推理问答的对话,Grok和Gemini的链式思考确保更高正确...\"}",
|
||
"timestamp": "2025-10-08T18:43:30.143668",
|
||
"tool_call_id": "web_search:5",
|
||
"name": "web_search"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "现在让我创建一个精美的HTML页面来展示这些AI模型的对比信息:",
|
||
"timestamp": "2025-10-08T18:43:34.784929"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-10-08T18:43:34.795152",
|
||
"tool_calls": [
|
||
{
|
||
"id": "create_file:6",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "create_file",
|
||
"arguments": "{\"path\": \"ai_models_comparison/index.html\", \"file_type\": \"html\", \"annotation\": \"AI模型对比页面主文件\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"path\": \"ai_models_comparison/index.html\", \"size\": 0, \"message\": \"已创建空文件: ai_models_comparison/index.html。请使用 append_to_file 追加正文内容,或使用 modify_file 进行小范围替换。\"}",
|
||
"timestamp": "2025-10-08T18:43:36.624932",
|
||
"tool_call_id": "create_file:6",
|
||
"name": "create_file"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "",
|
||
"timestamp": "2025-10-08T18:43:38.629830",
|
||
"tool_calls": [
|
||
{
|
||
"id": "append_to_file:7",
|
||
"index": 0,
|
||
"type": "function",
|
||
"function": {
|
||
"name": "append_to_file",
|
||
"arguments": "{\"path\": \"ai_models_comparison/index.html\", \"reason\": \"创建完整的AI模型对比HTML页面,包含精美的图表和交互效果\"}"
|
||
}
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"awaiting_content\": true, \"path\": \"ai_models_comparison/index.html\", \"message\": \"\\n请按照以下格式输出需要追加到文件的完整内容,禁止输出任何解释性文字:\\n<<<APPEND:ai_models_comparison/index.html>>>\\n(在此行之后紧接着写入要追加的全部内容,可包含多行代码)\\n<<<END_APPEND>>>\\n若追加完成后仍需继续写入,请再次调用 append_to_file。\"}",
|
||
"timestamp": "2025-10-08T18:43:40.441462",
|
||
"tool_call_id": "append_to_file:7",
|
||
"name": "append_to_file"
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": "<<<APPEND:ai_models_comparison/index.html>>>\n<!DOCTYPE html>\n<html lang=\"zh-CN\">\n<head>\n <meta charset=\"UTF-8\">\n <meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">\n <title>AI模型性能对比 - 2025年度顶级模型分析</title>\n <script src=\"https://cdn.jsdelivr.net/npm/chart.js\"></script>\n <script src=\"https://cdn.jsdelivr.net/npm/chartjs-adapter-date-fns/dist/chartjs-adapter-date-fns.bundle.min.js\"></script>\n <link href=\"https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap\" rel=\"stylesheet\">\n <style>\n * {\n margin: 0;\n padding: 0;\n box-sizing: border-box;\n }\n\n body {\n font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;\n background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);\n min-height: 100vh;\n color: #333;\n overflow-x: hidden;\n }\n\n .container {\n max-width: 1400px;\n margin: 0 auto;\n padding: 20px;\n }\n\n .header {\n text-align: center;\n margin-bottom: 40px;\n animation: fadeInDown 1s ease-out;\n }\n\n .header h1 {\n font-size: 3rem;\n font-weight: 700;\n color: white;\n margin-bottom: 10px;\n text-shadow: 0 4px 20px rgba(0,0,0,0.3);\n }\n\n .header p {\n font-size: 1.2rem;\n color: rgba(255,255,255,0.9);\n font-weight: 300;\n }\n\n .models-grid {\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(320px, 1fr));\n gap: 30px;\n margin-bottom: 50px;\n }\n\n .model-card {\n background: rgba(255,255,255,0.95);\n border-radius: 20px;\n padding: 30px;\n box-shadow: 0 20px 40px rgba(0,0,0,0.1);\n backdrop-filter: blur(10px);\n transition: all 0.3s ease;\n position: relative;\n overflow: hidden;\n animation: fadeInUp 1s ease-out;\n }\n\n .model-card:hover {\n transform: translateY(-10px);\n box-shadow: 0 30px 60px rgba(0,0,0,0.15);\n }\n\n .model-card::before {\n content: '';\n position: absolute;\n top: 0;\n left: 0;\n right: 0;\n height: 4px;\n background: linear-gradient(90deg, #667eea, #764ba2);\n }\n\n .model-header {\n display: flex;\n align-items: center;\n margin-bottom: 20px;\n }\n\n .model-icon {\n width: 50px;\n height: 50px;\n border-radius: 12px;\n margin-right: 15px;\n display: flex;\n align-items: center;\n justify-content: center;\n font-size: 24px;\n font-weight: bold;\n color: white;\n }\n\n .deepseek { background: linear-gradient(135deg, #ff6b6b, #ee5a24); }\n .qwen { background: linear-gradient(135deg, #4ecdc4, #44a08d); }\n .kimi { background: linear-gradient(135deg, #a8edea, #fed6e3); color: #333; }\n .gemini { background: linear-gradient(135deg, #667eea, #764ba2); }\n\n .model-name {\n font-size: 1.5rem;\n font-weight: 600;\n margin-bottom: 5px;\n }\n\n .model-company {\n font-size: 0.9rem;\n color: #666;\n }\n\n .model-specs {\n display: grid;\n grid-template-columns: 1fr 1fr;\n gap: 15px;\n margin-bottom: 20px;\n }\n\n .spec-item {\n background: #f8f9fa;\n padding: 12px;\n border-radius: 10px;\n text-align: center;\n transition: all 0.3s ease;\n }\n\n .spec-item:hover {\n background: #e9ecef;\n transform: scale(1.05);\n }\n\n .spec-label {\n font-size: 0.8rem;\n color: #666;\n margin-bottom: 5px;\n }\n\n .spec-value {\n font-size: 1.1rem;\n font-weight: 600;\n color: #333;\n }\n\n .model-features {\n margin-top: 20px;\n }\n\n .feature-tag {\n display: inline-block;\n background: linear-gradient(135deg, #667eea, #764ba2);\n color: white;\n padding: 4px 12px;\n border-radius: 20px;\n font-size: 0.8rem;\n margin: 3px;\n animation: pulse 2s infinite;\n }\n\n .charts-section {\n background: rgba(255,255,255,0.95);\n border-radius: 20px;\n padding: 40px;\n margin-bottom: 40px;\n box-shadow: 0 20px 40px rgba(0,0,0,0.1);\n backdrop-filter: blur(10px);\n animation: fadeInUp 1.2s ease-out;\n }\n\n .charts-grid {\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(500px, 1fr));\n gap: 40px;\n margin-top: 30px;\n }\n\n .chart-container {\n position: relative;\n height: 400px;\n background: white;\n border-radius: 15px;\n padding: 20px;\n box-shadow: 0 10px 30px rgba(0,0,0,0.1);\n transition: all 0.3s ease;\n }\n\n .chart-container:hover {\n transform: translateY(-5px);\n box-shadow: 0 15px 40px rgba(0,0,0,0.15);\n }\n\n .chart-title {\n font-size: 1.3rem;\n font-weight: 600;\n margin-bottom: 20px;\n text-align: center;\n color: #333;\n }\n\n .comparison-table {\n background: rgba(255,255,255,0.95);\n border-radius: 20px;\n padding: 40px;\n box-shadow: 0 20px 40px rgba(0,0,0,0.1);\n backdrop-filter: blur(10px);\n animation: fadeInUp 1.4s ease-out;\n overflow-x: auto;\n }\n\n .comparison-table table {\n width: 100%;\n border-collapse: collapse;\n margin-top: 20px;\n }\n\n .comparison-table th,\n .comparison-table td {\n padding: 15px;\n text-align: center;\n border-bottom: 1px solid #e9ecef;\n transition: all 0.3s ease;\n }\n\n .comparison-table th {\n background: linear-gradient(135deg, #667eea, #764ba2);\n color: white;\n font-weight: 600;\n position: sticky;\n top: 0;\n }\n\n .comparison-table tr:hover {\n background: #f8f9fa;\n transform: scale(1.02);\n }\n\n .comparison-table td:first-child {\n font-weight: 600;\n color: #333;\n }\n\n .score-bar {\n background: #e9ecef;\n border-radius: 10px;\n height: 8px;\n overflow: hidden;\n margin: 5px 0;\n }\n\n .score-fill {\n height: 100%;\n border-radius: 10px;\n transition: width 1s ease-out;\n }\n\n .deepseek-fill { background: linear-gradient(90deg, #ff6b6b, #ee5a24); }\n .qwen-fill { background: linear-gradient(90deg, #4ecdc4, #44a08d); }\n .kimi-fill { background: linear-gradient(90deg, #a8edea, #fed6e3); }\n .gemini-fill { background: linear-gradient(90deg, #667eea, #764ba2); }\n\n .interactive-controls {\n display: flex;\n justify-content: center;\n gap: 20px;\n margin-bottom: 30px;\n flex-wrap: wrap;\n }\n\n .control-btn {\n background: linear-gradient(135deg, #667eea, #764ba2);\n color: white;\n border: none;\n padding: 12px 24px;\n border-radius: 25px;\n cursor: pointer;\n font-weight: 500;\n transition: all 0.3s ease;\n box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);\n }\n\n .control-btn:hover {\n transform: translateY(-2px);\n box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4);\n }\n\n .control-btn.active {\n background: linear-gradient(135deg, #ff6b6b, #ee5a24);\n box-shadow: 0 4px 15px rgba(255, 107, 107, 0.3);\n }\n\n .loading {\n display: inline-block;\n width: 20px;\n height: 20px;\n border: 3px solid rgba(255,255,255,.3);\n border-radius: 50%;\n border-top-color: #fff;\n animation: spin 1s ease-in-out infinite;\n }\n\n @keyframes fadeInDown {\n from {\n opacity: 0;\n transform: translateY(-30px);\n }\n to {\n opacity: 1;\n transform: translateY(0);\n }\n }\n\n @keyframes fadeInUp {\n from {\n opacity: 0;\n transform: translateY(30px);\n }\n to {\n opacity: 1;\n transform: translateY(0);\n }\n }\n\n @keyframes pulse {\n 0% {\n transform: scale(1);\n }\n 50% {\n transform: scale(1.05);\n }\n 100% {\n transform: scale(1);\n }\n }\n\n @keyframes spin {\n to { transform: rotate(360deg); }\n }\n\n @media (max-width: 768px) {\n .header h1 {\n font-size: 2rem;\n }\n \n .models-grid {\n grid-template-columns: 1fr;\n }\n \n .charts-grid {\n grid-template-columns: 1fr;\n }\n \n .model-specs {\n grid-template-columns: 1fr;\n }\n }\n\n .tooltip {\n position: fixed;\n background: rgba(0,0,0,0.8);\n color: white;\n padding: 8px 12px;\n border-radius: 6px;\n font-size: 0.9rem;\n pointer-events: none;\n z-index: 1000;\n opacity: 0;\n transition: opacity 0.3s ease;\n }\n\n .tooltip.show {\n opacity: 1;\n }\n </style>\n</head>\n<body>\n <div class=\"container\">\n <div class=\"header\">\n <h1>🤖 AI模型性能对比分析</h1>\n <p>2025年度顶级AI模型全方位对比 - 深度解析DeepSeek V3.1、Qwen 2.5-Max、Kimi K2、Gemini 2.5 Pro</p>\n </div>\n\n <div class=\"models-grid\">\n <div class=\"model-card\" data-model=\"deepseek\">\n <div class=\"model-header\">\n <div class=\"model-icon deepseek\">DS</div>\n <div>\n <div class=\"model-name\">DeepSeek V3.1</div>\n <div class=\"model-company\">深度求索 - 2025年8月</div>\n </div>\n </div>\n <div class=\"model-specs\">\n <div class=\"spec-item\">\n <div class=\"spec-label\">总参数量</div>\n <div class=\"spec-value\">685B</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">激活参数</div>\n <div class=\"spec-value\">37B</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">上下文长度</div>\n <div class=\"spec-value\">128K</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">架构类型</div>\n <div class=\"spec-value\">MoE</div>\n </div>\n </div>\n <div class=\"model-features\">\n <span class=\"feature-tag\">混合专家架构</span>\n <span class=\"feature-tag\">思考/非思考模式</span>\n <span class=\"feature-tag\">开源</span>\n <span class=\"feature-tag\">成本优化</span>\n </div>\n </div>\n\n <div class=\"model-card\" data-model=\"qwen\">\n <div class=\"model-header\">\n <div class=\"model-icon qwen\">QW</div>\n <div>\n <div class=\"model-name\">Qwen 2.5-Max</div>\n <div class=\"model-company\">阿里巴巴 - 2025年1月</div>\n </div>\n </div>\n <div class=\"model-specs\">\n <div class=\"spec-item\">\n <div class=\"spec-label\">训练数据</div>\n <div class=\"spec-value\">20T+ tokens</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">架构类型</div>\n <div class=\"spec-value\">MoE</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">上下文长度</div>\n <div class=\"spec-value\">32K</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">输入成本</div>\n <div class=\"spec-value\">¥0.002/1K</div>\n </div>\n </div>\n <div class=\"model-features\">\n <span class=\"feature-tag\">超大规模训练</span>\n <span class=\"feature-tag\">双语优化</span>\n <span class=\"feature-tag\">企业级API</span>\n <span class=\"feature-tag\">工具集成</span>\n </div>\n </div>\n\n <div class=\"model-card\" data-model=\"kimi\">\n <div class=\"model-header\">\n <div class=\"model-icon kimi\">K2</div>\n <div>\n <div class=\"model-name\">Kimi K2</div>\n <div class=\"model-company\">月之暗面 - 2025年7月</div>\n </div>\n </div>\n <div class=\"model-specs\">\n <div class=\"spec-item\">\n <div class=\"spec-label\">总参数量</div>\n <div class=\"spec-value\">1T</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">激活参数</div>\n <div class=\"spec-value\">32B</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">输入成本</div>\n <div class=\"spec-value\">¥4/1M tokens</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">输出成本</div>\n <div class=\"spec-value\">¥16/1M tokens</div>\n </div>\n </div>\n <div class=\"model-features\">\n <span class=\"feature-tag\">万亿参数</span>\n <span class=\"feature-tag\">开源发布</span>\n <span class=\"feature-tag\">智能体能力</span>\n <span class=\"feature-tag\">混合推理</span>\n </div>\n </div>\n\n <div class=\"model-card\" data-model=\"gemini\">\n <div class=\"model-header\">\n <div class=\"model-icon gemini\">GM</div>\n <div>\n <div class=\"model-name\">Gemini 2.5 Pro</div>\n <div class=\"model-company\">Google - 2025年3月</div>\n </div>\n </div>\n <div class=\"model-specs\">\n <div class=\"spec-item\">\n <div class=\"spec-label\">Token上限</div>\n <div class=\"spec-value\">1M</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">知识截止</div>\n <div class=\"spec-value\">2025年1月</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">多模态支持</div>\n <div class=\"spec-value\">全模态</div>\n </div>\n <div class=\"spec-item\">\n <div class=\"spec-label\">推理架构</div>\n <div class=\"spec-value\">多阶段</div>\n </div>\n </div>\n <div class=\"model-features\">\n <span class=\"feature-tag\">多模态理解</span>\n <span class=\"feature-tag\">长上下文</span>\n <span class=\"feature-tag\">深度研究</span>\n <span class=\"feature-tag\">企业级</span>\n </div>\n </div>\n </div>\n\n <div class=\"charts-section\">\n <h2 style=\"text-align: center; margin-bottom: 30px; font-size: 2rem; color: #333;\">📊 性能对比图表</h2>\n \n <div class=\"interactive-controls\">\n <button class=\"control-btn active\" data-chart=\"",
|
||
"timestamp": "2025-10-08T18:45:49.089767"
|
||
},
|
||
{
|
||
"role": "tool",
|
||
"content": "{\"success\": true, \"path\": \"ai_models_comparison/index.html\", \"lines\": 531, \"bytes\": 17286, \"forced\": true, \"message\": \"已向 ai_models_comparison/index.html 追加 531 行(17286 字节)。未检测到结束标识,已在输出结束处完成写入,请补充<<<END_APPEND>>>。\"}",
|
||
"timestamp": "2025-10-08T18:45:49.097607",
|
||
"tool_call_id": "append_to_file:7",
|
||
"name": "append_to_file"
|
||
}
|
||
],
|
||
"metadata": {
|
||
"project_path": "/Users/jojo/Desktop/agents/正在修复中/agent_kimi_源码备份/project",
|
||
"thinking_mode": true,
|
||
"total_messages": 22,
|
||
"total_tools": 17,
|
||
"status": "active"
|
||
},
|
||
"token_statistics": {
|
||
"total_input_tokens": 174100,
|
||
"total_output_tokens": 4884,
|
||
"updated_at": "2025-10-08T19:16:42.059232"
|
||
}
|
||
} |